Politechnika todzka

Instytut Elektroniki

Systemy Zintegrowane
(ang. Embedded Systems)

Real Time System Concepts

mgr inz. Pawet Poryzata
Zaktad Elektroniki Medyczne)

Zrodta

e Do przygotowania prezentacji wykorzystano
materiaty z ponizszych:

— FreeRTOS.org™ Project — Designed for Microcontrollers
o hittp://www.freertos.org/

— UC/OS — The Real Time Kernel, Jean. J. Labrosse

— Real-Time Concepts for Embedded Systems, Qing
Li and Carolyn Yao

— http://www.sics.se/~adam/pt/ - Protothreads

— www.embedded.com

Programowanie Mikrokontroleréw, styczen 2010

http://www.freertos.org/
http://www.sics.se/~adam/pt/
http://www.embedded.com

Embedded System

e computing systems with tightly coupled hardware and
software integration, that are designed to perform a dedicated
function, for eg.

— router

— printer

— set top box

— mp3 player

— navigation system
— eftc.

e .embedded” — systems are usually an integral part of a larger
system, known as the embedding system. Multiple embedded
systems can coexist in an embedding system

Programowanie Mikrokontroleréw, styczern 2010

Event Driven Embedded Systems

« event-driven embedded system:

— walt for some event (a time tick, a button press, a mouse
click, or the arrival of a data packet)

— recognize the event

— react by performing the appropriate computation. This
reaction might include:

 manipulating the hardware,

e generating secondary, "soft" events that trigger other internal
software components.

— If event-handling action is complete enter a dormant state
In anticipation of the next event.

e event-driven embedded system + time constraints =
real-time embedded system

Programowanie Mikrokontroleréw, styczern 2010

Real-Time Embedded System

Multiple
Events

Synchronous

JTUUUUL
AVAVAVA

Asynchronous

U E i

&

Timing

Constraints

<

B

Real-Time
System

responding to external events includes:

— recognizing when an event occurs,
— performing the required processing as a result of the event,
— outputting the necessary results within a given time constraint.

system that responds to external events in a timely fashion

Outputs
Single
Synchronous Output
JUTUUUL A
LN
Multiple
Asynchronous QuLiiellis
JIErlm A‘A
A AVEN A,

Real-Time Embedded System

e not all embedded systems exhibit real-time
behaviors nor are all real-time systems
embedded

-’ N - N
/7 7 \ N\
/ / \ \
Embedded I | Resl Time \ Real-Time
Systems Q \ Systems | , Systems
\ \n 7
\ v /
~ -~ ~ -

Programowanie Mikrokontroleréw, styczern 2010 n

Strategie programowania

e Super Loop,

— nazywane rowniez Infinite/Endless Loop,
Foreground/Background Systems etc.

o State Machines (maszyny stanu)

* Protothreads (protowatki) lub rozwigzania typu
Super Simple Tasker (SST)

e« RTOS
— kooperatywny
— wywtaszczeniowy

Programowanie Mikrokontroleréw, styczern 2010

Super Loop

e Super Loop jest konieczna poniewaz... nie
mamy systemu operacyjnego do ktdrego
mozna Wrocic...

void main(void)

E* Prepare for Task X

X _Init()

while(l) for ever Super Loop) */
{
X(0); Perform the task */
]

}

Programowanie Mikrokontroleréw, styczen 2010

Super Loop

o Zalety:

— Prostota — budowa, testowanie oraz pozniejsza
rozbudowa,

— Wysoka wydajnosc oraz brak wymagan dotyczgcych
sprzetu na ktorym uruchomiona ma byc¢ aplikacja,

— Przenoszenie na inne platformy.
o Wady:
— Bardzo proste aplikacje,

— Aplikacje wymagajgce spetnienia okreslonych, krytycznych
ram czasowych — np. proces probkowania z
czestotliwoscig 500Hz,

— Nieustanna praca z ,pethg mocg” (tryb normalny) —
problem, gdy aplikacja wymaga oszczednego zarzgdzania
energia.

Programowanie Mikrokontroleréw, styczern 2010 n

Super Loop

o Przyktad:

Temperature
SEensor

Temperature
dial

heating

::ntrolijisz

ﬂﬂ_f

Boiler

void main (void)
{
/* Init the system */
C_HEAT Init();

/* 'for ever'

while (1) (Super Loop) */

{
/* Find out what temperature the user requires

(via the user interface) */
C_HEAT Get Required Temperature();

/* Find out what the current room temperature is
(via temperature sensor) */
C_HEAT Get Actual Temperature() ;

/* Adjust the gas burner, as required */
C_HEAT Contrel Boiler();
}

Michael J. Pont.

Programowanie Mikrokontroleréw, styczen 2010

Super Loop: wymagania wspotczesnych aplikacii

 Wymagania stawiane wspotczesnym urzgdzeniom
(systemom zintegrowanym):
— Predkosc¢ pojazdu ma by¢ mierzona co 0,5s,
— Wyswietlacz powinien by¢ odswiezany 40 razy na
sekunde,

— Obliczone potozenie przepustnicy musi zostac¢ ustawione
co 0,3s,

— Wibracje silnika muszg by¢ mierzone (prébkowane) z
czestotliwoscig 1000Hz,

— Reakcja na przerwanie czujnika krancowego nie moze
przekroczyc 200ms,

— Klawiatura musi by¢ skanowana co 50ms. ‘

Programowanie Mikrokontrolerow, styczen 2010

Super Loop: sposoby rozwigzania problemu...

volid main(void)

{

Init System();

while(l) /* 'for ever' (Super Loop) */
{

X(); /* Call the function (10 ms duration) */
Delay 50ms() ; /* Delay for 50 ms */

}
}

e Dobry sposob... pod warunkiem, ze:
— Znamy dokfadny czas wykonywania funkcji X(),

— Czas ten jest zawsze jednakowy... w praktyce nie
realne!!!

Michael J. Pont.

Programowanie Mikrokontrolerow, styczen 2010

Super Loop: sposoby rozwigzania problemu...

bit{SWITCH_Get_Input(c:r.::nst tByte DEBOUNCE PERIOD) ° The executlon tlme Of

tByte Return value = SWITCH NOT PRESSED; typical code Is not
if (Switch pin == 0) constant, it changes with
{ successive passes
/* switch is pressed */ | through a portion of the
/* Debounce - Jjust wait... */ J) IOOp,
DELAY LOOP_Wait (DEBOUNCE_PERIOD) ; o I.I: a COde Change |S
/* Check switch again */ made, the timing of the
1e [Switehpin = O [T11 loop is affected,
(it anesd e ewsen e seipgie’ /" o Most high volume
Return value ;pSWITCH_PI;ESSED; microcontroller-based
- applications are
designed as
/% Now (finally) return switch value */ foreground/background
) - ' systems.

Programowanie Mikrokontroleréw, styczern 2010

Super Loop: sposoby rozwigzania problemu...

______ _._Backgmund —— Foreground — Super Loop calls
modules (functions) to
perform desired

task level interrupt level

ISR operation
/ |ISRs handle
asynchronous events
_ T," and perform critical
ime .
| N ISR operations

 Worst case task level
response time depends
on how long the
background loop takes to
-— Code execution execute

Programowanie Mikrokontrolerow, styczen 2010

Co gdy program staje sie bardzie] skomplikowany?

e W pewnym momencie podescie typu ,klasyczny
Super Loop” przestaje wystarczac,

— zadania krytyczne czasowo, realizowane na poziomie
przerwan stajg sie bardziej rozbudowane (np. pojawia sie
zaleznosc¢ od kontekstu, stanu, w jakim jest urzgdzenie),

— koniecznos¢ implementacji protokotow transmis;ji
— komunikacja — np. modem GSM

e najbardzie) naturalnym podejsciem staje sie
Implementacja programu (jednego badz wiekszej
Ilosci modutow) za pomocg maszyn stanu...

Programowanie Mikrokontroleréw, styczern 2010

State Machines

« A state machine is defined as an
algorithm that can be in one of a small

number of states.

o A state is a condition that causes a
prescribed relationship of inputs to
outputs, and of inputs to next states.

 Mealy machine is a state machine where
the outputs are a function of both present
state and input. Moore machine, in which
the outputs are a function only of state.

 |n both cases, the next state Is a function
of both present state and input.

state 1

Opened

E: open door

transition

close door

/

transition condition

open_door

entry action

Programowanie Mikrokontrolerow, styczen 2010

State Machines

input char =/
input char = 7’ / no output / output end signal

!
START DONE!

input char !=‘/ / no output

A simple state machine to parse a character string, looking for ‘//’

 the first occurrence of a slash produces no output, but causes
the machine to advance to the second state.

 If it encounters a non-slash while in the second state, then it
will go back to the first state, because the two slashes must
be adjacent.

 if it finds a second slash, however, then it produces the "we're
done" output.

Programowanie Mikrokontroleréw, styczern 2010

example of iImplementation - requirements

Turn radio on.

Wait for t_awake milliseconds.

Turn radio off, but only if all communication has completed.

If communication has not completed, wait until it has

completed. Then turn off the radio.

5. Wait for t_sleep milliseconds. If the radio could not be turned
off before t_sleep milliseconds because of remaining
communication, do not turn the radio off at all.

6. Repeat from step 1.

e

Problem: with events, we can't write this as a 6-step program!

Programowanie Mikrokontroleréw, styczern 2010

example of Implementation — state machine

With events, we must use an explicit state machine!

t awake timer expierd

RADIO OFF

RADIO ON

'_/
t sleep timer expired

RADIO
WAITING

Programowanie Mikrokontroleréw, styczern 2010

example of implementation — C code (1)

enum { voi d radi o_wake_event handl er () {
switch(state) {
ON, e OFR: <—
VAI TI NG, if(timer_expired(&imer)) { ©
OFF radi o_on(); o O
} state: state = ON, § 8
’ tinmer_set(&iner, T_AWAKE); o
} E Q
br eak; Vo @
case ON: E 0 Y
simple, but: i f(timer_expired(&imer)) { o8 =
« it can lead to a very long function timer_set(&imer, T_SLEEP); S o
i i f(!comrunication_conplete()) { 7] E
(for eg. 10 or 20 lines of code per state = WAl TI NG c =
state for each of 20 or 30 states) } el Sg_{ o) 2 2
) raal o_o ,
* it can lead to astray vv_hen you state = OFF. % n
change the code late in the }
testing phase (for eg. forgot a } <:|
br eak;
break statement at the end of a case WAl TI NG
case) i f(c?nIruni cg\li on_conplete() || timer_expired(&inmer)) {
° : 1] :] state =)
having one state's coc_:ie fall into Cimer_set (& imer. T AWKE):
the next state's code is usually a } else {
no-no (can be used only when radio_off ();
implicitly marked with for eg. } state = OFF:
[/fallthrough br eak;
comment) }

example of implementation — C code (2)

typedef enum { voi d Radi oOf f (VOi d) {
ON =0 if(timer_expired(&iner)) { <:I
’ radi o_on();
WAITING current State = ON
OFF timer _set(&iner, T_AWAKE);
} eState_t; }
}

. . | _ . . .
voi d Igajit:(t‘jef_}t-ab e[]1)() {Radi oOn, Radi oWi t, voi d Radi oOn(voi d) {

if(timer_expired(&iner)) {
timer_set(&inmer, T_SLEEP);
i f(!conmunication_conplete()) {

eState t current St ate;

array of pointers to the
individual state functions

mai n() { currentState = WAI TI NG
/... } else {
- radi o_off();
while (1) {) current State = OFF,
decrement Ti mer () ; }
J } —
} }

voi d radi o_wake_event handl er (voi d) { VO: ?(Sim\r/\\?i:;ggindz:oirpl ete() ||

state_table[currentState](); tiner_expired(&iner)) {
} current State= ON;
timer_set(&imer, T_AWAKE);
} else {
radi o_off();
current State = OFF,

State Machines — sum up

o Advantages:

— state machine can define various things: whole application,
application module, protocol analyzer module, key
debouncer etc.

— state changes can be triggered by event-handler functions

— forces the programmer to think of all the cases and,
therefore, to extract all the required information from the
user,

— you can quickly draw a state transition diagram on a
whiteboard, in front of the user, and walk him through it,

— the test plan almost writes itself - all you have to do is to go
through every state transition

Programowanie Mikrokontroleréw, styczern 2010

Protothreads / Super Simple Tasker

e Advantages :

— Implements sequential flow of control without using
complex state machines or full multi-threading
— lightweight:
* in traditional multi-threading may have a too large memory

overhead for embedded system — for eg. each task requires its own
stack,

 in protothreads all threads run on the same stack, context switching
IS done by stack rewinding

— requires only two bytes of memory per protothread,

— Implemented in pure C, do not require any machine-
specific assembler code.

Programowanie Mikrokontroleréw, styczern 2010

RTOS

Application

« Areal-time operating system (RTOS) is

a program that schedules execution in
a timely manner, manages system
resources, and provides a consistent
fo%ndation for developing application
code.

* Application code designed on an RTOS

can be quite diverse, ranging from a
simple application for a digital
stopwatch to a much more complex
application for aircraft navigation.

 Therefore a good RTOS is scalable in

order to meet different sets of
requirements for different applications.

RTOS
Networking File Other
Protocols System Components
P Y
C/C++ Support / Kernel) POSIX
Libraries M _~" Support
Device Debugging Device
Drivers Facilities 1/O
BSP

Target Hardware

But RTOS can be a
combination of various
modules, including the

kernel, a file system,

networking protocol
stacks, and other
components required for a
particular application

In some applications, an
RTOS comprises only a
kernel, which is the core
supervisory software that
provides minimal logic,
scheduling, and resource-
management algorithms.

Kernel

« Kernel —the part of a multitasking system responsible for the
management of tasks (that is, for managing the CPU's time)
and communication between tasks.

The fundamental service provided by the kernel is context
switching.

e The use of a real-time kernel will generally simplify the design
of systems by allowing the application to be divided into
multiple tasks managed by the kernel. A kernel will add
overhead to your system and consume CPU time (typically
between 2 and 5%).

* A kernel can allow you to make better use of your CPU by
providing you with indispensible services such as semaphore
management, mailboxes, queues, time delays, etc.

Programowanie Mikrokontroleréw, styczern 2010

Kernel components

?

O

[|
Timers Other
Objects
®. |
Mutex @ Objects Message
Semaphores Events Tacks Queues
:_C Mailboxes
Counting
Semaphores,: ”
... ASRs
®. Wl 155)
Binary .~ Services ., Pipes
Semaphores,.+

5 Time Management Services

o L]

....... ® |Interrupt Handling Services
...... ¢ Memory Management Services
L
[]

Device Management Services
Other Services

Common components in an RTOS kernel that including objects,
the scheduler, and some services

Scheduler — is contained within
each kernel and follows a set of
algorithms that determines which
task executes when. Some
common examples of scheduling
algorithms include round-robin
and preemptive scheduling.

Objects — are special kernel
constructs that help developers
create applications for real-time
embedded systems. Common
kernel objects include tasks,
semaphores, and message
queues.

Services — are operations that
the kernel performs on an object
or, generally operations such as
timing, interrupt handling, and
resource management.

Terminologia

« Task Level Response — time, between moments when
Information for a background module was made available by
an ISR and when it was processed by the background
routine.

o Critical Section Of Code, Critical Region - A critical section
of code Is code that needs to be treated indivisibly. Once the
section of code starts executing, it must not be interrupted.

« Resource - A resource is any entity used by a task. A
resource can thus be an I/O device such as a printer, a
keyboard, a display, etc. or a variable, a structure, an array,
etc

« Shared Resource - A shared resource is a resource that can
be used by more than one task. Each task should gain
exclusive access to the shared resource to prevent data
corruption — this is called Mutual Exclusion.

Programowanie Mikrokontroleréw, styczern 2010

RTOS Overhead

e RTOS Overhead — code added by RTOS kernel. Kernel requires extra
ROM (code space), additional RAM for its data structures but most
Importantly, each task requires its own stack space which has a tendency
to eat up RAM quite quickly.

* RTOS overhead depends on
— number of tasks,
— how many registers the CPU has,
— services provided by the kernel (communication between tasks etc.)

 The time required to perform a context switch (fundamental service
provided by the kernel) is determined by how many registers have to be
saved and restored by the CPU.

« Performance of a real-time kernel should not be judged on how many
context switches the kernel is capable of doing per second.

Programowanie Mikrokontroleréw, styczern 2010

Scheduler

e Scheduler —Is the part of the kernel responsible for
determining which task will run next.

 To understand how scheduling works one needs to know
following terms:
— schedulable entities
— multitasking
— context switching
— dispatcher
— scheduling algorithms

« Schedulable entities - schedulable entity is a kernel object
that can compete for execution time on a system, based on a
predefined scheduling algorithm; tasks and processes are all
examples of schedulable entities found in most kernels,

Programowanie Mikrokontroleréw, styczern 2010

Multitasking

List of
Tasks

Task 2

Task 1

Context Switch

Save Task |_Current Load
1 Info Thread of Task 2

Execution
=i=p-

Context of Current Context of
Task2 Context Task1

—P‘ |<— Context Switch Time
|

Time

Multitasking — Multitasking is the process
of scheduling and switching the CPU
between several tasks; a single CPU
switches its attention between several
sequential tasks;

Multitasking is the ability of the operating
system to handle multiple activities within
set deadlines. A real-time kernel might
have multiple tasks that it has to schedule
to run.

Multitasking maximizes the utilization of the
CPU and also provides for modular
construction of applications.

One of the most important aspects of
multitasking is that it allows the application
programmer to manage complexity inherent
In real-time applications. Application
programs are typically easier to design and
maintain if multitasking is used.

Task, Thread

TASK #1

Stack

Task Control Block
_Status |

]
Priority

TASK #2

Stack

Task Control Block

| Status |

S
| Bririty |

MEMORY

TASK #n

—»

Stack

Task Control Block

| Status

SP

Priority
|
|

-

Task, Thread - a simple
program that thinks it has
the CPU all to itself. The
design process for a real-
time application involves
splitting the work to be
done into tasks which are
responsible for a portion of
the problem. Each task is
assigned a priority, its own
set of CPU reqisters, and
Its own stack area

CPU

CRULEeqIsters

sp

Context

!

Programowanie Mikrokontrolerow, styczen 2010

Task States

Task is initialized and
enters the finite state
machine.

Task is unblocked
but is not the Task no longer has

hiahest-priority task the highest priority. Task has the
o prioy highest priority.

Task is unblocked
and is the

Blocked highest-priority
task

Task is blocked
due to a request
for an unavailable
resource.

Programowanie Mikrokontrolerow, styczen 2010

Context Switch / Task Switch

 Context Switch / Task Switch — When a
multitasking kernel (it's scheduler) decides to
run a different task, it simply saves the current
task's context (CPU registers) in the current
task's context storage area — It’s stack. Once
this operation Is performed, the new task's
context is restored from its storage area and
then resumes execution of the new task's
code.

Programowanie Mikrokontroleréw, styczern 2010

Dispatcher

 The dispatcher is the part of the scheduler that
performs context switching and changes the flow of
execution. At any time an RTOS is running, the flow
of execution, also known as flow of control, Is
passing through one of three areas: through an
Eppliclation task, through an ISR, or through the
ernel.

 When atask or ISR makes a system call, the flow of
control passes to the kernel to execute one of the
system routines provided by the kernel. When it is
time to leave the kernel, the dispatcher is
responsible for passing control to one of the tasks in
the user’s application. It will not necessarily be the
same task that made the system call.

Programowanie Mikrokontroleréw, styczern 2010

Context Switch on an AVR

r—————— =~ - - - - === — === === !
|
|

(B) (3 Tick ISR Pseudo Code:;

Q} 3 I T FJI:FTickISRIl}

{

Increment tick count
If{ Tick increment readied task)

|

|

}

|

vControlTask \.4--—5,/ : I

| I

| |

/ L { !
™

N ;

| |

| |

| |

|

|

|

|

)

vKeyHandlerTask ~/
Idle Task

F
.y
@

I
A Switch execution context to readied task. : General Purpose Stack
@f : | Registers

5 . o -Return from ISR : RO
=TimerBvent NN =000 : =
Context Switch

I Slalus

Current Execution Context R25 lalus

context is to be loaded R27[XH] PC

\ R28IYLI Stack Pointer
. [—
what can cause context switch: R29[YH] SPH SPL

- RTOS kernel (it will suspend and resume tasks as necessary to I R30[ZL] Oxt
ensure the tas_k Wl_th highest priority that is ready to run is the task | R " Oxee |
given processing time, |

- task can choose to suspend itself:

- sleep for a fixed period of time (wait a timeout),
- wait for a resource to become available

|
I
I
I
will be switched -vControlTask | [R26xL]
| Program Counter
|
I
|

|
I
|
I
I
I
I
|
I
|
I
|
SREG I
|
I
I
I
|
I
I
I
I
I
I
I

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch on an AVR

void SI G QUTPUT_COMPARELIA(void) _ attribute__ ((signal, naked));
voi d vPortYiel dFronlick(void) _ _attribute__ ((naked));

voi d SI G QUTPUT_COMPARELIA(void) { /1l Interrupt service routine for the RTCS ti ck.

}

/1 Call the tick function.

vPort Yi el dFr omTi ck() ;

/'l Return fromthe interrupt. |If a context switch has occurred this
[l will return to a different task.

asmvolatile ("reti");

voi d vPortYi el dFronili ck(void) {

/1 This is a naked function so the context is saved.

port SAVE_CONTEXT() ;

/1l Increment the tick count and check to see if the new tick val ue has caused a

/1l delay period to expire. This function call can cause a task to becone ready to run.
vTaskl ncrenment Ti ck() ;

/'l See if a context swtch is required. Swmitch to the context of a task made ready

/1 to run by vTasklncrementTick() if it has a priority higher than the interrupted task.
vTaskSw t chCont ext () ;

/'l Restore the context. If a context switch has occurred this will restore

/'l the context of the task being resuned.

por t RESTORE_CONTEXT() ;

/'l Return fromthis naked function.

asmvolatile ("ret");

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch on an AVR

[Execution Context Immediatel

|Before Suspension

CFU

Stack Ptr

Prog Counter

Program Memory

LDI Reg1, OXFA

Reg1 FA LDI Reg2, OxE2
Reg2 EZ - ADD Reg1, RegZ
Reg3 00

The task gets suspended as it is about to execute an ADD.

The previous instructions have already set the registers used

by the ADD. When the task is resumed the ADD instruction

will be the first instruction to execute. The task will not know if

a different fask modified Reg1 or Reg2 in the interim.

|Execution Context |
' |
: General Purpose Stack |
| Registers :
|

| |
|

| |
| . I
| : |
| R25 Status I
| I
| |
: Program Counter |
| |
|

| Stack Pointer :
: [R2oiYHl] [sPH |[sPL P _ :
| X

i i
| [Oe 1l
.

The AVR Context

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Programowanie Mikrokontroleréw, styczen 2010

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 1: Prior to the RTOS tick

Interrupt

Context - TaskA is Executing ~ TaskA Code TaskA Stack |
: General — DI RO, O :
| Purpose |
| Registers Status LDIR1Y, 1 |
" [Ro@) SREG(A) ADD RO, R1 |
: R1(A) Program Counter :
B PCA) 1 |
I - _ Oxff I
| [R30(A) Stack Pointer |
| SPH || SPL Oxee :
|

| I

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 2:

he RTOS tick interrupt
occurs

| by interrupt

(-

General
Purpose
Registers

RO(A)

R1(A)

Status

SREG(A)

F-“mg_;ram Counter

PC(A)

e
—-_—

Stack Pointer

SPH

SPL

|
TaskA Code TaskA Stack :
LDI RO, 0 |

|

LDIR1, 1 |

|

ADD RO, R1 |
i |

p— TV
Oxff :

Oxee :

|

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 3: The RTOS tick interrupt
executes

Entire AVR execution context is pushed onto the stack of TaskA

TaskA Stack

|

|
| |
I |
I —- :
| R31(A) |
| R30(A) :
I :
| . - | Context pushed on stack :
l Stack Pointer - by portSAVE_CONTEXT() |
| -4 SPH SPL R1(A) ,
xr SREG(A) :
: RO(A) || _| |
| PC(A) —PC pushed on stack by |
I — interrupt l
| Oxff o |
: Oxee — TaskA application stack :

: |The kernel stores a copy of the stack pointer for each task :
“'.“L Copy of TaskA Stack Pointer ~ Copy of TaskB Stack Painter |
s SPH |[SPL SPH |[SPL |

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 4: Incrementing the Tick
Count

We assume that incrementing the tick count has caused TaskB to become ready to run.
TaskB has a higher priority than TaskA so vTaskSwitchContext() selects TaskB as the
task to be given processing time when the ISR completes

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 5: The TaskB stack pointer is
retrieved

TaskB Stack

—

R31(B)
R30(B)

I

I

I

I

|

I

I

I

I

: Stack Pointer . |_ TaskB context saved when
’r’+ SPH(B) || SPL(B) R1(B) TaskB was suspended
C

I

I

I

I

I

I

I

SREG(B)
RO(B)
PC(B)

[ox12 |

— TaskB application stack

|The kernel stores a copy of the stack pointer for each task
| Copy of TaskA Stack Pointer Copy of TaskB Stack Pointer
b SPH || SPL SPH || SPL .

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 6: Restore the TaskB context

I O I I T I S IS I I DI I S SIS DI I D I S I I S S S S B I S S .

ITaskE'. context has been restored TaskB Code TaskB Stack |
[I
| General CLR R15 |
| Purpose |
: Registers Status MOVW R18, R14 :
| | RO(B) SREG(B) CALL 0xC4 |
' [R1(B) Program Counter |
L . - PC@B) || |
| PC I
| : Stack Point 02 |
HSD{B} dC ginter
: SPH |[SPL 0x34 || |
| R31(B) |
e = e e e = e = e = — =

The RTOS tick interrupt interrupted TaskA, but is
returning to TaskB - the context switch is complete!

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch Step 7: The RTOS tick exits

'TaskE will now execute !

. |

(on return from interrupt TaskB Code TaskB Stack |
| |
| General - CLR R15 |
| Purpose |
: Registers Status MOVW R18, R14 :
| RO(B) SREG(B) CALL OxC4 |
|

: R1(B) Program Counter |
I : PC —r |
| . |
| [R30(B) Stack Pointer 0x12 :
| SPH || SPL | AYerani
| |

http:/masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Scheduling Algorithms

 The scheduler determines which task runs by
following a scheduling algorithm (also known
as scheduling policy). Most kernels today
support two common scheduling algorithms:

— preemptive priority-based scheduling
— non-preemptive priority-based scheduling

HIGH Task Completion

Preemption IE ERE_ s
Example of preemptive priority- Task T /
based scheduling :> Fricihy || Task Task2

| Task1 Task1 " '>

LOW

Programowanie Mikrokontroleréw, styczern 2010

Scheduling Algorithms

* Most real-time kernels are priority based. Each
task Is assigned a priority based on its
Importance. The priority for each task Is
application specific. In a priority-based kernel,
control of the CPU will always be given to the
highest priority task ready-to-run. When the
highest-priority task gets the CPU, however, Is
determined by the type of kernel used.

e There are two types of priority-based kernels:
non-preemptive and preemptive

Programowanie Mikrokontroleréw, styczern 2010

Types of priority-based kernels

RTOS

|

|

Non-preemptive /
Cooperative Kernel

Each task does something to explicitly give
up control of the CPU. To maintain the
lllusion of concurrency, this process must be
done frequently.

Asynchronous events are handled by ISRs.

ISR can make a higher priority task ready to
run, but the ISR always returns to the
interrupted task.

The new higher priority task will gain control
of the CPU only when the current task gives
up the CPU.

|

Preemptive Kernel

Highest priority task ready to run is always
given control of the CPU

When a task makes a higher priority task
ready to run, the current task is preempted
(suspended) and the higher priority task is
immediately given control of the CPU

If an ISR makes a higher priority task ready,
when the ISR completes, the interrupted
task is suspended and the new higher
priority task is resumed

Execution of the highest priority task is
deterministic.

Programowanie Mikrokontrolerow, styczen 2010

Types of priority-based kernels

[T0S |

Non-preemptive / Preemptive Kernel
Cooperative Kernel

Low Priority Task | [Low Priority Task
B |, R R
! ngh Priority Task
ISR makes the high v : Y
o . ISR makes the high i
priofity task ready Time priority task ready Time

4
High Priority Task
>

e

Low priority task
relinquishes the CPU

Non-preemptive / Cooperative Kernel

v Zalety
— Interrupt latency is typically low
— Non-reentrant functions can be used by each task without fear of corruption by
another task, however, they should not be allowed to give up control of the CPU
— Task-level response using a non-preemptive kernel can be much lower than with
foreground/background systems

— Lesser need to guard shared data through the use of semaphores — each task
owns the CPU and you don't have to fear that a task will be preempted (but in
some instances, semaphores should still be used — shared 1/0 devices may still
require the use of mutual exclusion semaphores)

® Wwady
— Responsiveness - A higher priority task that has been made ready to run may
have to wait a long time to run, because the current task must give up the CPU

when it is ready to do so
— Task-level response time is non-deterministic
— You never really know when the highest priority task will get control of the CPU

Programowanie Mikrokontroleréw, styczern 2010

Preemptive Kernel

v Zalety
— Great responsiveness - the highest priority task ready to run is always given
control of the CPU.
— Execution of the highest priority task is deterministic.

— Task-level response time is minimized.

® wady
— Larger RTOS overhead

— Application code using a preemptive kernel should not make use of non-reentrant
functions unless exclusive access to these functions is ensured through the use
of mu tual exclusion semaphores, because both a low priority task and a high
priority task can make use of a common function. Corruption of data may occur if
the higher priority task preempts a lower priority task that is making use of the
function.

Programowanie Mikrokontroleréw, styczern 2010

Reentrant Function

e Function that can be used by more than one task without fear
of data corruption (function can be interrupted at any time and
resumed at a later time without loss of data). Reentrant
functions either use local variables (i.e., CPU registers or
variables on the stack) or protect data when global variables

are used.
int Temp;
vold strcpy(char *dest, char *src)
{ void swap(int *x, int *vy)
while (*dest++ = *srci+) | {
; Temp = *x;
} _ oo = 3-:'-:.';
*dest = NUL; v = Temp;
: }
Reentrant Function Not-reentrant Function

Programowanie Mikrokontroleréw, styczern 2010

Problem of reentrancy

OSIntExit()

ISR —*

(9)

(2)

HIGH PRIORITY TASK

A,_I_'

LOW PRIORITY TASK
Temp ==
while (1) {
x = 1;
y = 2; .
swap (&x, &y): (1)
Temp = *X;
«
*x = *y;
*y = Temp;

| \— Temp == 3!

OSTimeDly (1) ;
}

0.S. ‘—|ﬁ)
A

whlle {1} {

swap{&z &t) ;
Temp = ¥z,

= *t;
= Temp;

DSTlmeDlyil

Programowanie Mikrokontrolerow, styczen 2010

Priorities

 Task Priority - The more important the task,
the higher the priority given to It.

o Static Priorities - priority of each task does
not change during the application's execution.
Each task is thus given a fixed priority at
compile time.

« Dynamic Priorities - priority of tasks can be
changed during the application's execution,
each task can change its priority at run-time —
priority inversion problem

Programowanie Mikrokontroleréw, styczern 2010

Priority inversion problem

. Priority Inversion___

e
]

= —
R | (12)
Task 1 (H) L |
NI
Task 2 (M) .
VI O N 5 0P
Task 3 (L) B "]i -
Task 3 Get Semaphore I ; I :
(2) P i Task 3 Resumes
L (9)

Task 1 Preem;ats Task3
(3

Task 1 Tries to get Semaphore |
(5)

Task 3 Releases the éemaphore
(11)

Task 2 Pre(e_}n;pts Task 3

Programowanie Mikrokontrolerow, styczen 2010

Priority inheritance

Kernel that supports Prio_ﬂr;i_g_/__l_l_j;fersion
priority inheritance A . .
18] (9)
Task 1 (H) A —

Task 2 (M)

Task 3 (L) i —

Task 3 Get(%emaphore

(7)

(11)

i/'l'ask 1 Completes

Task 1 Preempts Task 3 | .
) L (10)

Task 1 Tries to get Semaphore
(Priority of Task 3 is raised to Task 1's)

(6)

Task 3 Releases the Semaphore
(Task 1 Resumes)

(8)

Dziedziczenie
priorytetu

Programowanie Mikrokontrolerow, styczen 2010

Mutual Exclusion

The easiest way for tasks to communicate with each other is through shared
data structures (easy when all tasks exist in a single address space):

— Global variables,

— Pointers,

— Buffers,

— Linked lists,

— Ring buffers, etc.
» While sharing data simplifies the exchange of information, you must

ensure that each task has exclusive access to the data to avoid data
corruption — this is called mutual exclusion.

e Most common methods to obtain exclusive access to shared resources
are:

— Disabling Interrupts,
— Test-And-Set,

— Disabling Scheduling,
— Using Semaphores.

Programowanie Mikrokontroleréw, styczern 2010

Mutual Exclusion

* Disabling Interrupts

Disable interrupts;
Access the resource (read/write from/to variables) ;
Reenable interrupts;

e Test-And-Set

Disable interrupts:;
if (*Rccess Variable' is 0)
Set wvariable to 1;
Reenable interrupts;
Lccess the resourcs;
Disable interrupts;
Set the ‘Access Variable’ back to 0;
Reenable interrupts;
} else |
Reenable interrupts:;
/* You don’t have access to the resource, try back later; */

1.
I

e Disabling Scheduling

void Function (woid)
{
0SSchedLock () ;

/* You can access shared data in here (interrupts are recognized) */

0SSchedUnlock() ;

Mutual Exclusion

Semaphores

0S5 EVENT *SharedDataSem;

void Function (void)
{

INT8U err:

0SSemPend (SharedDataSem, 0,

.

&err) ;

/* You can access shared data in here

.

(interrupts are recognized) */
0SSemPost (SharedDataSem) ;

Semaphores

Semaphore - protocol mechanism offered by most
multitasking kernels. Semaphores are used to:

— control access to a shared resource (mutual exclusion);

— signal the occurrence of an event;

— allow two tasks to synchronize their activities.

A semaphore Is a key that your code acquires in order to
continue execution. If the semaphore is already in use, the
requesting task is suspended until the semaphore is released
by Its current owner.

Two types of semaphores — binary and counting (8-, 16- or
32-bit).

Three operations that can be performed on semaphore:

— INIT (CREATE)

— WAIT (PEND)

— SIGNAL (POST)

Programowanie Mikrokontrolerow, styczen 2010

Semaphores

* The initial value of the semaphore must be provided when the semaphore
IS initialized. The waiting list of tasks is always initially empty.

» A task desiring the semaphore will perform a WAIT operation. If the
semaphore is available (the semaphore value is greater than 0), the
semaphore value is decremented and the task continues execution. If the
semaphore's value is 0, the task performing a WAIT on the semaphore is
placed in a waiting list. Most kernels allow you to specify a timeout; if the
semaphore is not available within a certain amount of time, the requesting
task is made ready to run and an error code (indicating that a timeout has
occurred) is returned to the caller.

« Atask releases a semaphore by performing a SIGNAL operation. If no
task is waiting for the semaphore, the semaphore value is simply
Incremented. If any task is waiting for the semaphore, however, one of the
tasks is made ready to run and the semaphore value is not incremented
the key is given to one of the tasks waiting for it. Depending on the kernel
the task which will receive the semaphore is either:

— the highest priority task waiting for the semaphore, or
— the first task that requested the semaphore (First In First Out, or FIFO).

Programowanie Mikrokontroleréw, styczern 2010 m

Binary semaphores

"l am tas ad |
Wait for
return

} else {

return

"l am task #2!" }

"l am task #1!"

TN
N
~
~
N\

N
wiire Semaphore AN
P

INT8U CommSendCmd (char *cmd, char *response,

Acquire port's semaphore (with timeout):
Send command to device;

response (with timeout):

if (timed out)
Felease semaphore;

(error code):

Felease semaphore;

(no error):

INT16U timeout)

| am task #1!

ISEMAPHORE ‘ PRINTER

| am task #2!

‘I::>

~

7/
/

Acquire Semaphore S/
//

s

Ve

"l am task #2!"

Binary semaphores

o Ukrywanie semaforow przed zadaniami

1
ommSendCmd() |}
[

DRIVER [—¥» RS-232C

|

1 Semaphore

i
CommSendCmd() E
I

Programowanie Mikrokontrolerow, styczen 2010

Counting Semaphores

» Buffer management using a counting semaphore
— Buffer pool initially contains 10 buffers,
— A task would obtain a buffer from the buffer manager by calling BufReq().

— When the buffer is no longer needed, the task would return the buffer to the buffer
manager by calling BufRel().

BufFreelList
Next T~ Next > Next 1* 0 BUF *BufReq(void)
{
BUF *ptr:
LAoquire a semaphore;
Dizsable interrupts;
+ +L ptr = BufFreslist;
* + BufFreslist = ptr—>Buflext;
10 Enable interrupts;
return {(ptr):
BufReq() [¢—» L+——+ BufRel() , (ptx)
II.'II"-, “‘\“‘."‘ ,.-"-.'
Y o 7
. S U N Pt Buffer Manager void BufRel (EUF *ptr)
"'-_‘L . ,-"‘l-’ J {
\ S 4 . :
L P . / Disable interrupts;
< - ~A / ,
ptr—>BufNext = BufFreelist;
BufFreeList = ptr;:

Enable interrupts;
Esleass semaphores:

Semaphores

« Semaphores are often overused. The use of a semaphore to access a
simple shared variable is overkill in most situations.

 The overhead involved in acquiring and releasing the semaphore can
consume valuable time. You can do the job just as efficiently by disabling
and enabling interrupts.

* Let's suppose that two tasks are sharing a 32-bit integer variable. The first
task increments the variable while the other task clears it. If you consider
how long a processor takes to perform either operation, you will realize
that you do not need a semaphore to gain exclusive access to the
variable. Each task simply needs to disable interrupts before performing its
operation on the variable and enable interrupts when the operation is
complete.

* A semaphore should be used, however, if the variable is a floating-point
variable and the microprocessor doesn't support floating-point in
hardware. In this case, the processing time involved in processing the
floating-point variable could affect iInterrupt latency if you had disabled
Interrupts.

Programowanie Mikrokontroleréw, styczern 2010

Deadlock Embrace

 Deadlock (Deadky Embrace) a situation in which two tasks
are each unknowingly waiting for resources held by each
other. If task T1 has exclusive access to resource R1 and task
T2 has exclusive access to resource R2, then if T1 needs
exclusive access to R2 and T2 needs exclusive access to R1,
neither task can continue. They are deadlocked.

e The simplest way to avoid a deadlock is for tasks to:

— acquire all resources before proceeding,
— acquire the resources in the same order, and

Programowanie Mikrokontroleréw, styczern 2010

Unilateral / Bilateral Rendezvous

« Synchronizing tasks and ISRs - A task can be synchronized with an ISR, or
another task when no data is being exchanged, by using a semaphore.

* Note that, in this case, the semaphore is drawn as a flag, to indicate that it is used
to signal the occurrence of an event (rather than to ensure mutual exclusion, in
which case it would be drawn as a key).

« When used as a synchronization mechanism, the semaphore is initialized to 0.
Using a semaphore for this type of synchronization is using what is called a
unilateral rendezvous. A task initiates an 1/O operation and then waits for the
semaphore. When the I/O operation is complete, an ISR (or another task) signals
the semaphore and the task is resumed.

 Two tasks can synchronize their activities by using two semaphores. This is called
a bilateral rendezvous.

C e OIS

& @
@ ~F~@ e

Conjunctive / Disjunctive Synchronization

-
P Laba T

+ -~

» Event flags are used { o ask

when a task needs to I Events Semaphore
synchronize with the —>» OR > >
occurrence of multiple 3 POST PEND
events. The task can be 1§ |gg }

synchronized when =77 DISJUNCTIVE SYNCHRONIZATION

— any of the events have
occurred — disjunctive 27T
synchronization (logical { TASK
OR),

_ all events have occurred - > gy Slemaphm \
conjunctive gANE POST F PEND
synchronization (logical - 0
AND). , ISR

CONJUNCTIVE SYNCHRONIZATION

Programowanie Mikrokontroleréw, styczern 2010

Intertask Communication

* Itis sometimes necessary for a task or an ISR to communicate information
to another task. This information transfer is called intertask
communication. Information may be communicated between tasks in two
ways:

— through global data;
— by sending messages.

 When using global variables, each task or ISR must ensure that it has
exclusive access to the variables.

— If an ISR is involved, the only way to ensure exclusive access to the common
variables is to disable interrupts.

— If two tasks are sharing data each can gain exclusive access to the variables
by using either disabling/enabling interrupts or through a semaphore (as we
have seen). Note that a task can only communicate information to an ISR by
using global variables.

 Atask is not aware when a global variable is changed by an ISR unless
the ISR signals the task by using a semaphore or by having the task
regularly poll the contents of the variable. To correct this situation, you
should consider using either a message mailbox or a message queue

Programowanie Mikrokontroleréw, styczern 2010 m

Message Mailbox

Message Mailbox is typically a pointer size variable. Through a service
provided by the kernel, a task or an ISR can deposit a message (the
pointer) into this mailbox. Similarly, one or more tasks can receive
messages through a service provided by the kernel. Both the sending task
and receiving task will agree as to what the pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task
desires to receive messages through the mailbox. A task desiring to
receive a message from an empty mailbox will be suspended and placed
on the waiting list until a message is received.

Typically, the kernel will allow the task waiting for a message to specify a
timeout. If a message is not received before the timeout expires, the
requesting task is made ready-to-run and an error code (indicating that a
timeout has occurred) is returned to it.

When a message is deposited into the mailbox, either the highest priority
task waiting for the message is given the message (called priority-based)
or the first task to request a message is given the message (called First-In-

First-Out, or FIFO).
Mailbox
. I PEND
X0

Message Queue

Through a service provided by the kernel, a task or an ISR can deposit a
message (the pointer) into a message queue. Similarly, one or more
tasks can receive messages through a service provided by the kernel.
Both the sending task and receiving task will agree as to what the pointer
IS actually pointing to. Generally, the first message inserted in the queue
will be the first message extracted from the queue (FIFO).

As with the mailbox, a waiting list is associated with each message queue
In case more than one task is to receive messages through the queue. A
task desiring to receive a message from an empty queue will be
suspended and placed on the waiting list until a message is received.

Typically, the kernel will allow the task waiting for a message to specify a
timeout. If a message is not received before the timeout expires, the
requesting task is made ready-to-run and an error code (indicating a
timeout occurred) is returned to it.

When a message is deposited into the queue, either the highest priority
task or the first task to wait for the message will be given the message.

Queue
Interrupt _=—» ISR 10 —EEND—px
0

Interrupt Service Routines

* An interrupt is a hardware mechanism used to inform the CPU that an
asynchronous event has occurred. When an interrupt is recognized, the
CPU saves part (or all) of its context (i.e. registers) and jumps to a special
subroutine called an Interrupt Service Routine.

« The ISR processes the event and upon completion of the ISR, the
program returns to:

— The background for a foreground/background system.
— The interrupted task for a non-preemptive kernel.
— The highest priority task ready-to-run for a preemptive kernel.

* Interrupts allow a microprocessor to process events when they occur. This
prevents the microprocessor from continuously polling an event to see if
this event has occurred. Microprocessors allow interrupts to be ignored
and recognized through the use of two special instructions: disable
Interrupts and enable interrupts, respectively.

* Inareal-time environment, interrupts should be disabled as little as
possible. Disabling interrupts affects interrupt latency and also, disabling
Interrupts may cause interrupts to be missed.

Programowanie Mikrokontroleréw, styczern 2010

Interrupt Service Routines

 Processors

TIME » generally allow
Interrupts to be
TASK_I — nested. This means
ISR #1 | I

| that while servicing
— - an interrupt, the

| processor will
recognize and
o service other (more
interrupt #3 important) interrupts.

|

|

ISR #2 i
|

ISR #3 |
|
|
Y

Interrupt #1 J

Programowanie Mikrokontrolerow, styczen 2010

Interrupt Latency, Response, and Recovery

Foreground/Background System

- - _ _ _TIME__ _ _ _ _ .
_Interrupt Request
f//
¥ BACKGROUND BACKGROUND
[[

|
|
|
%~ CPU Context Saved |

i’ = =

I L
I I I CPU context

|
i _Jlsﬁr_lﬁ_R_Cude_ restored
\ T

————————— !

_ Interrupt Flespons!e Interrupt Recovery
[™

Programowanie Mikrokontrolerow, styczen 2010

Interrupt Latency, Response, and Recovery

Non-preemptive Kernel

_ - - _ _TIME___ - - - .

_Interrupt Request
&

A CPU Context Saved
#
| |[- } l
y L.

| -
i CPU context

___U_&ELLE_EL restored
I | . |

s
{
I
Y T1ASK TASK
|
|

————————— o1
__Interrupt Respnnsé Interrupt Recovery
[i

Programowanie Mikrokontrolerow, styczen 2010

Interrupt Latency, Response, and Recovery

Preemptive Kernel

_ TIME >

Interrupt Request

l———
i | A
I |__TASK _)
| i | i
I |
| |
T~ CPU Context Saved Kernel's ISR __. } A
i Exit function I I
P EOEIEET y)
| | | -
! Kernel's ISR ____.fI e glthlo‘r::; e

Entry function

L | mmmenm " “finnnans

Ty
3
I
igliterrupt Latency, Kernel'sISR____| .~ Jr_ CPU context I
Exit function | restored B
ig———(Dterrupt Response g, | |
| |
[i
| TASK -~
pl————— ———l

Interrupt Recovery

Programowanie Mikrokontrolerow, styczen 2010

RTOS Clock Tick

 Clock Tick — special interrupt that occurs
periodically. This interrupt can be viewed as the
system's heartbeat. The time between interrupts Is
application specific and is generally between 10 and
200 mS. The clock tick interrupt allows a kernel to
delay tasks for an integral number of clock ticks and
to provide timeouts when tasks are waiting for events
to occur. The faster the tick rate, the higher the
overhead imposed on the system.

o All kernels allow tasks to be delayed for a certain
number of clock ticks. The resolution of delayed
tasks is 1 clock tick, however, this does not mean
that its accuracy is 1 clock tick.

Programowanie Mikrokontroleréw, styczern 2010

RTOS Clock Tick

« 20 mS >

Tick Interrupt | | | | |
Tick ISR [[| []
All higher priority tas I [[[]

Call to delay 1 tick (20 msy Call ‘”dj'“ 1tick (20 m$) Call to delay 1 tick (20 ms)

Delayed Task i i i i
L t1 DJ L t3 >|

(19ms) g™ (27 mS)

T 1 1

The task attempts to delay for 20 mS but because of its priority, actually executes at
varying intervals. This will thus cause the execution of the task to jitter.

Programowanie Mikrokontroleréw, styczern 2010

RTOS Clock Tick

+—2oms— >
Tick Interrupt | I | | |

Tick ISR L]] []

Al higher priority t2 SN |] [1

Call to delay 1 tick (20 msy] 21!t 91y 11k (20mS) - call to delay 1 tick (20 ms)

Delayed Task Il I- - .
> e —»
t M 2—™ (27 mS)
(6 mS) (19 mS)

T T i)

The execution times of all higher-priority tasks and ISRs are slightly less than one tick. If the task
delays itself just before a clock tick, the task will execute again almost immediately! Because of
this, if you need to delay a task for at least 1 clock tick, you must specify one extra tick. In other

words, if you need to delay a task for at least 5 ticks, you must specify 6 ticks!

Programowanie Mikrokontroleréw, styczern 2010

RTOS Clock Tick

4+—20ms—™
Tick Interrupt | | | | I

Tick ISR [] I []

All higher priority tallks N I

Call to delay 1 tick (20 mE}‘| Call to delay 1 tick (20 mS}‘|

Delayed Task L- i |

[t2
> (26 mS)

t1
(40 mS)

)

The execution times of all higher-priority tasks and ISRs extend beyond one clock tick. In this case,
the task that tries to delay for 1 tick will actually execute 2 ticks later! In this case, the task missed its
deadline. This might be acceptable in some applications, but in most cases it isn't.

Programowanie Mikrokontroleréw, styczern 2010

Comparision

Foreground/Background

Non-Preemptive Kernel

Preemptive Kernel

Interrupt
Latency (Time)

MAX (Longest instruction,
User interrupt disable) +
Vector to ISR

MAX(Longest instruction,
User interrupt disable,
Kernel interrupt disable) +
Vector to ISR

MAX(Longest instruction,
User interrupt disable,
Kernel interrupt disable) +
Vector to ISR

Interrupt latency +
LB Interrupt latency + Interrupt latency + p’ y
Response , , Save CPU’s context +
: Save CPU’s context Save CPU’s context .
(Time) Kernel ISR entry function
Find highest priority task +
Interrupr Restore background’s context + Restore task’s context + Restore highest priority

Recovery (Time)

Return from interrupt

Return from interrupt

task’s context +
Return from interrupt

Task Response

Longest task +

Find highest priority task +

: Background Find highest priority task + .
(Time) g g priorty Context switch
Context switch
. . Application code + Application code +
ROM size Application code
Kernel code Kernel code
. Application code + Application code +
: Application code
RAM size Kernel RAM +SUM(Task stacks + [Kernel RAM +SUM(Task stacks +
MAX(ISR stack)) MAX(ISR stack))
Services

available?

Application code must provide

Yes

Yes

Przyktadowy system

 The system consists of:

— An embedded computer within a
control terminal.

— Two fieldbus networked sensors.

Control Fanel
— The plant being controlled (could
-|C°£};‘r’:{e" be anything, motor, heater, etc.).
This is connected on the same
o Senscr fieldbus network.
with field . .
\ bus — A matrix keypad that is scanned
* nierface using general purpose |0.
/ wnfed| — Two LED indicators.
— e o1 — An LCD display.
Remote Monitor

— An embedded WEB server to
which a remote monitoring
computer can attach.

— An RS232 interface to a
configuration utility that runs on a
PDA.

Programowanie Mikrokontrolerow, styczen 2010

Stawiane wymagania / zadania

e Plant Control

— Each control cycle shall perform the following sequence:

« Transmit a frame on the fieldbus to request data from the networked sensors.
« Wait to receive data from both sensors.

» Execute the control algorithm.

* Transmit a command to the plant.

— The control function of the embedded computer shall transmit a request every
10ms exactly, and the resultant command shall be transmitted within 5ms of
this request. The control algorithm is reliant on accurate timing, it is therefore
paramount that these timing requirements are met.

 Local Operator Interface [keypad and LCD]

— The keypad and LCD can be used by the operator to select, view and modify
system data. The operator interface shall function while the plant is being
controlled. To ensure no key presses are missed the keypad shall be scanned

at least every 15ms. The LCD shall update within 50ms of a key being
pressed.

Programowanie Mikrokontroleréw, styczern 2010

Stawiane wymagania / zadania

 LED

— The LED shall be used to indicate the system status. A flashing green LED
shall indicate that the system is running as expected. A flashing red LED shall
indicate a fault condition. The correct LED shall flash on and off once ever
second. This flash rate shall be maintained to within 50ms.

e RS232 PDA Interface

— The PDA RS232 interface shall be capable of viewing and accessing the same
data as the local operator interface, and the same timing constraints apply -
discounting any data transmission times.

« TCP/IP Interface
— The embedded WEB server shall service HTTP requests within one second

Programowanie Mikrokontroleréw, styczern 2010

Stawiane wymagania / zadania - podziat

* The timing requirements of the hypothetical system
can be split into three categories:

— Strict timing - the plant control

* The control function has a very strict timing requirement as it must
execute every 10ms.

— Flexible timing - the LED

* While the LED outputs have both maximum and minimum time

constraints, there is a large timing band within which they can
function.

— Deadline only timing - the human interfaces

* This includes the keypad, LCD, RS232 and TCP/IP Ethernet
communications.

 The human interface functions have a different type of timing
requirement as only a maximum limit is specified. For example, the

keypad must be scanned at least every 10ms, but any rate up to
10ms is acceptable.

Programowanie Mikrokontroleréw, styczern 2010

Rozwigzanie 1.
SUPER LOOP

 Each component of the application is represented by
a function that executes to completion.

 |deally a hardware timer would be used to schedule
the time critical plant control function. However,
having to wait for the arrival of data and the complex
calculation performed make the control function
unsuitable for execution within an interrupt service
routine.

 Prioritisation can be introduced with frequency and
order in which components are called within the loop.

Programowanie Mikrokontroleréw, styczern 2010

Rozwigzanie 1.
SUPER LOOP

small code size.

Mo reliance on third party source code.

Mo ETOS RAM, ROM or processing overhead.

Difficult to cater for complex timing requirements.

Dioes not scale well without & large increase in complexity.

Timing hard to evaluate or maintain due to the interdependencies between the different functions.

Programowanie Mikrokontrolerow, styczen 2010 m

SUPER LOOP - The Plant Control Function

e The control function can be represented by the
following pseudo code:

voi d Pl ant Control Cycle(void) {
Transm t Request () ;
Wi t For Fi r st Sensor Response() ;

I f (Got data fromfirst sensor) {
Wai t For SecondSensor Response() ;

| f(Got data from second sensor) {
Perf ornmControl Al gorithn();
Transm t Resul t s();

}
}
}

Programowanie Mikrokontroleréw, styczern 2010

SUPER LOOP - The Human Interface Functions

 Keypad, LCD, R5232 communications and
embedded WEB server.

int main(void) {
Initialise();

for(;5) {
ScanKeypad() ;

Updat eLCIX) ;
Two assumptions:

— Comunications IO is buffered by interrupt service routines
so peripherals do not require polling,

— Individual function calls within the loop execute quickly
enough for all the maximum timing requirements to be met.

Programowanie Mikrokontroleréw, styczern 2010

SUPER LOOP - Scheduling the Plant Control
Function

e Control function cannot be simply called from a 10ms timer interrupt — it is too long.
We need some temporal control. For example:

I nt Ti mer Expired;
/1l Configured to execute every 10ns.
void Timerlnterrupt(void) {

Ti mer Expired = true;

}

int main(void) {
Initialise();

/1 Comrs buffers nust be |arge
/'l enough to hold 10ns worth of
/| dat a.

ProcessRS232Char acters();

ProcessHTTPRequest s();
for(;5) { }
if(TimerExpired) { /'l The processor can be put to sleep
Pl ant Cont r ol Cycl e() /'l here provided it is woken by any

Ti mer Expired = fal se; [l interrupt.

ScanKeypad() ; }
Updat eLCD() ; /'l Shoul d never get here.

return O;
[/ The LEDs could use a count of }

/1l the nunber of interrupts, or a

[l different tiner.
ProcessLEDs();

... but this is not an acceptable solution...

Programowanie Mikrokontrold&Qow, styczen 201

SUPER LOOP - Scheduling the Plant Control
Function

e Relies on every function maximum / minimum execution time,
not very maintainable:

— A delay or fault on the field bus results in an increased execution time
of the plant control function — problem with interface functions.

— Executing all the functions each cycle could result in a breach of the
control cycle timing.

« Jitter in the execution time may cause cycles to be missed
(ex. the execution time of Pr ocessHTTPRequest s() could
be negligible when no HTTP requests have been received,
but quite lengthy when a page was being served).

 The communication buffers are only serviced once per cycle
necessitating their length to be larger than would otherwise be
necessary.

Programowanie Mikrokontroleréw, styczern 2010 m

SUPER LOQORP - korekty

e Allowing each function to execute in its entirety takes too long
=> split each function into a number of states. Only one state

IS executed each call.

/'l Define the states

/1 for the control cycle function.

t ypdef enum eCONTROL_STATES {
eStart, // Start new cycle.
eWaitl, // First sensor response. }
eWait2 // Second sensor response.

} eControl St ates;

case eWit1l;
if(Got data fromfirst sensor) {
eState = eWi t2;

// How are tine outs to be handl ed?
br eak:

void Pl ant Control Cycle(void) {

. case eWit 2;
static eControl State eState = eStart;

I f(Got data fromfirst sensor) {
Per f or mCont rol Al gorithm();
Transm t Resul ts();
eState = eStart,;

swtch(eState) {
case eStart
Transm t Request () ;

eState = eWait1; [/ How are tine outs to be handl ed?
br eak; br eak;

Programowanie Mikrokontroleréw, styczern 2010

SUPER LOQORP - korekty

* This function is now structurally more
complex, and introduces further scheduling
problems.

e The code itself will become harder to
understand as extra states are added - for
example to handle timeout and error
conditions.

Programowanie Mikrokontrolerow, styczen 2010

SUPER LOQORP - korekty

 The granularity of the timer - a shorter timer interval will give
more flexibility.

* Implementing the control function as a state machine (an in
so doing making each call shorter) may allow it to be called
from a timer interrupt.

« timer interval will have to be short enough to ensure the
function gets called at a frequency that meets its timing
requirements.

o Alternatively

— Infinite loop solution could be modified to call different functions on
each loop - with the high priority control function called more
frequently.

Programowanie Mikrokontroleréw, styczern 2010

SUPER LOQORP - korekty

int main(void) {
I nt Counter = -1;
Initialise();

/'l Function is inplenented as a state
/'l machi ne, execution is nuch quicker.
/1 Timer frequency has been raised.
for(;;) {
1 f(TimerExpired) {
Count er ++;
switch(Counter) {
case O :
Control Cycl e();
ScanKeypad() ;
br eak;

case 1 :

Updat eLCIX) ;
br eak;

case 2 :
Control Cycl e();
ProcessRS232Char acters();

br eak:

case 3 :
ProcessHTTPRequest s() ;

/! Go back to start

Counter = -1;
br eak:
}
Ti mer Expired = fal se;
}

}
/1 Shoul d never get here.
return O;

Programowanie Mikrokontroleréw, styczen 2010

SUPER LOQORP - korekty

 More intelligence can be introduced by means of event
counters, whereby the lower priority functionality is only called

If an event has occurred that requires servicing:

for(;;) {
I f(TimerExpired) {
Count er ++;

switch(EventStatus()) {
case EVENT _KEY :

/| Process the control cycle ScanKeypad() ;
/] every other |oop. Updat eLCIX() ;
switch(Counter) { br eak;
case 0 :
Cont r ol Q/Cl 6(); case EVENT 232 :
br eak: ProcessRS232Char acters();
br eak;
case 1 :
Counter = -1: case EVENT _TCP :
br eak: ProcessHTTPRequest s() ;
} br eak;
}. .
/| Process just one of the other functions. TinmerExpired = fal se;
/Il Only process a function if there is }
/1 something to do. Event Status() checks }

[/ for events since the last iteration.

SUPER LOQORP - korekty

 Processing events in this manner will reduce
wasted CPU cycles but the design will still
exhibit jitter in the frequency at which the
control cycle executes.

Programowanie Mikrokontrolerow, styczen 2010

Rozwigzanie 2.
Traditional Preemptive Multitasking System

e A separate task is created for each part of the system (when it

IS able to exist in isolation, or is having a particular timing
requirement).

o Tasks will block until an event indicates that processing Is
required. Events can either be external (ex. key being
pressed), or internal (ex. timer expiring).

* Priorities - allocated to tasks in accordance to their timing

requirements. The stricter the timing requirement the higher
the priority

PlantControlTask

RS232Task || KeyScanTask

IdleTask || LEDTask || WebServerTask

Programowanie Mikrokontroleréw, styczern 2010

Rozwigzanie 2.
Traditional Preemptive Multitasking System

« Concept of Operation

— The highest priority task that is able to execute (is not blocked) is the task
guaranteed by the RTOS to get processor time. The kernel will immediately
suspend an executing task when a higher priority task becomes available.

— Scheduling occurs automatically, with no explicit knowledge, structuring or
commands within the application source code. But ilt is the responsibility of the
application designers to ensure that tasks are allocated an appropriate priority.

— When no task is able to execute the idle task will execute. The idle task has
the option of placing the processor into power save mode.

 Scheduler Configuration

— The scheduler is configured for preemptive operation. The kernel tick
frequency should be set at the slowest value that provides the required time
granularity.

e Conclusion

— This can be a good solution provided the RAM and processing capacity is
available. The partitioning of the application into tasks and the priority assigned
to each task requires careful consideration.

Programowanie Mikrokontroleréw, styczern 2010 m

Rozwigzanie 2.
Traditional Preemptive Multitasking System

.- Simple, segmented, flexible, maintainable design with few interdependencies.

Processor utilisation is automatically switched from task to task on a most urgent need basis with no
¢ explicit action required within the application source code.

e o Fower consumption can be reduced if the idle task places the processor into power save (sleep)
= mode, but may also be wasted as the tick interrupt will sometimes wake the processor unnecessarily.

s » | he kemel functionality will use processing resources. The extent of this will depend on the chosen
= kemeltick frequency.

This solution requires a lat of tasks, each of which require their own staclk, and many of which require
a quele onwhich events can be received. This solution therefore uses a lot of RAMN.

. Frequent context switching between tasks of the same priconty willwaste processor cycles.

Programowanie Mikrokontrolerow, styczen 2010 ﬁ

Traditional Preemptive Multitasking System:
Plant Control Task

#defi ne CYCLE_RATE_MS 10

#defi ne MAX _COWS DELAY 2 ° Implements a” the
voi d Pl ant Control Task(void *pvParaneters) { control funCtionaIity:
port Ti ckType xLast WakeTi ne; .y -
Dat aType Datal, Data2: critical timing
[l A .
ni ti al i seTheQueue() requirements _thgrefo_re_
xLast WakeTi ne = xTaskGet Ti ckCount () ; ’[he h|ghest pnonty W|th|n
/I B the system.
for(;5) {
/] C

}

}

vTaskDel ayUntil (&xLast WakeTi me, CYCLE RATE MsS);
/'l Request data fromthe sensors.
Transm t Request () ;
/1l D
I f(xQueueRecei ve(xFi el dBusQueue, &Datal, MAX COWS DELAY)) {
/Il E
I f(xQueueRecei ve(xFi el dBusQueue, &Data2, MAX COWS DELAY)) {
Per f or mCont rol Al gorithm();
Transm t Resul ts();

}
}

Traditional Preemptive Multitasking System:
Embadded Web Server Task

« The embedded WEB server task can be represented by the
following pseudo code. This only utilises processor time when
data is available but will take a variable and relatively long
time to complete. It is therefore given a low priority to prevent

It adversely effecting the timing of the plant control, RS232 or
keypad scanning tasks.

voi d WebServer Task(void *pvParaneters) {
Dat aTypeA Dat a;
for(;;) {
/1 Block until data arrives. xEthernetQueue is filled by the
/'l Ethernet interrupt service routine.
| f (xQueueRecei ve(xEt hernet Queue, &Data, MAX DELAY)) {
ProcessHTTPDat a(Data);
}
}
}

Programowanie Mikrokontroleréw, styczern 2010 101

Traditional Preemptive Multitasking System:
RS232 Interface

e This is very similar in structure to the embedded WEB server
task. It is given a medium priority to ensure it does not
adversely effect the timing of the plant control task.

voi d RS232Task(void *pvParaneters) {
Dat aTypeB Dat a;
for(;;) {
/1 Block until data arrives. xRS232Queue is filled by the
/1 RS232 interrupt service routine.
I f(xQueueRecei ve(xRS232Queue, &Data, MAX DELAY)) {
ProcessSeri al Characters(Data);

}
}
}

Programowanie Mikrokontroleréw, styczern 2010 102

Traditional Preemptive Multitasking System:
Keypad Scanning Task

e Itis given a medium
priority as it's timing

requirements are #def i ne DELAY_PERI OD 4
Similar to the R8232 voi d KeyScanTask(void *pvParneters) {
char Key;
taSk- port Ti ckType xLast WakeTi ne;
: : xLast WakeTi ne = xTaskGet Ti ckCount () ;
* The cycle time Is set fort 12) {
much faster than the // Wait for the next cycle.
specified limit — 1t vTaskDel ayUnti | (&xLastWakeTi me, DELAY_PERI QD);
may not get /'l Scan the keyboard.
Processor time i f(KeyPressed(&Key)) {
Immediately upon UpdateDi splay(- Key)
request — and once -
executing may get }

pre-empted by the
plant control task.

Programowanie Mikrokontroleréw, styczern 2010 103

Traditional Preemptive Multitasking System:
Keypad Scanning Task

 If the overall system timing were such that this could be made
the lowest priority task then the call to vTaskDelayuUntil()
could be removed altogether. The key scan function would
then execute continuously whenever all the higher priority
tasks were blocked - effectively taking the place of the idle

task.

Programowanie Mikrokontroleréw, styczern 2010 104

Traditional Preemptive Multitasking System:
LED Task

 The simplest of all the tasks.

#defi ne DELAY_PERI OD 1000
voi d LEDTask(void *pvParneters) {
port Ti ckType xLast WakeTi ne;
xLast WakeTi ne = xTaskGet Ti ckCount () ;
for(;;) {
/1 Wait for the next cycle.
vTaskDel ayUnti | (&xLast WakeTi me, DELAY_PERI CD);
/'l Flash the appropriate LED.
I f(System sHeal thy())
Fl ashLED(GREEN);
el se
Fl ashLED(RED);

Programowanie Mikrokontroleréw, styczern 2010 105

Rozwigzanie 2a:
Reducing RAM Utilisation

* Our hypothetical application can be split into three categories:
— Strict timing - the plant control
» A high priority task is created to service the critical control functionality.
— Deadline only timing - the human interface

« RS232, keyscan and LED functionality are grupped into a single medium priority
task.

 Itis desirable for the embedded WEB server task to operate at a lower priority.
Rather than creating a task specifically for the WEB server an idle task hook Is
implemented to add the WEB server functionality to the idle task. The WEB server
must be written to ensure it never blocks!

— Flexible timing - the LED

« The LED functionality is too simple to warrant it's own task if RAM is at a premium.
For reasons of demonstration this example includes the LED functionality in the

single medium priority task. It could of coarse be implemented in a number of ways
(from a peripheral timer for example).

 Tasks other than the idle task will block until an event indicates that

processing Is required. Events can either be external (ex. a key being
pressed), or internal (ex. a timer expiring).

Programowanie Mikrokontrolerow, styczen 2010

106

Rozwigzanie 2a:
Reducing RAM Utilisation

e Concept of Operation

— The grouping of functionality into the medium priority task has three important
advantages over the infinite loop implementation presented in solution #2;

» The use of a queue allows the medium priority task to block until an event causes
data to be available - and then immediately jump to the relevant function to handle
the event. This prevents wasted processor cycles - in contrast to the infinite loop
Implementation whereby an event will only be processed once the loop cycles to the
appropriate handler.

» The use of the real time kernel removes the requirement to explicitly consider the
scheduling of the time critical task within the application source code.

* The removal of the embedded WEB server function from the loop has made the
execution time more predictable.

e Scheduler Configuration

— The scheduler is configured for preemptive operation. The kernel tick
frequency should be set at the slowest value that provides the required time
granularity.

e Conclusion

— This can be a good solution for systems
with limited RAM but it is still processor
intensive. Spare capacity within the
system should be checked to allow for
future expansion.

Priority] Tasks

| PlantControlTask |

LowPriorityTask [inc. ProcessRS232Characters(),
ScanKeypad(), UpdateLED()]

| 1dleTask [inc. WebServerTask] |

Rozwigzanie 2a:
Reducing RAM Utilisation

.- Creates only two application tasks so therefore uses much less EAM than solution #2.
.- Frocessor utilisation 15 automatically switched from task to task on a most urgent need basis.

.- Ltilising the idle task effectively creates three application task prionties with the overhead of onby two.

.e The design is still simple but the execution time of the functions within the medium pronty task could

— introduce timing issues. The separation of the embedded WEE server task reduces this risk and in
ary case any such issues would not effect the plant contral taslk:.

e o Fower consumption can be reduced if the idle task places the CFU Into power save (sleep) mode,
= but may also be wasted as the tick interrupt will sometimes wake the CPLU unnecessarily.

e o |he RTOS functionality will use processing resources. The extent of this will depend on the chosen
= kemel tick frequency.

.The design might not scale if the application grows too large.

Programowanie Mikrokontrolerow, styczen 2010 108

Rozwigzanie 2Db:
Reducing the Processor Overhead

« The critical plant control functionality is once again implemented by a high priority task but
the use of the cooperative scheduler necessitates a change to its implementation.
— Previously the timing was maintained using the vTaskDelayUntil() API function. When the preemptive

scheduler was used, assigning the control task the highest priority ensured it started executing at
exactly the specified time.

— Now the cooperative scheduler is being used - therefore a task switch will only occur when explicitly
requested from the application source code so the guaranteed timing is lost.

« Solution #4 uses an interrupt from a peripheral timer to ensure a context switch is requested
at the exact frequency required by the control task. The scheduler ensures that each
requested context switch results in a switch to the highest priority task that is able to run.

 The keypad scanning function also requires regular processor time so it too is executed
within the task triggered by the timer interrupt. The timing of this task can be easily
evaluated; The worst case processing time of the control function is given by the error case -
when no data is forthcoming from the networked sensors causing the control function to time
out. The execution time of the keypad scanning function is basically fixed. We can therefore
be certain that chaining their functionality in this manner will never result in jitter in the control
cycle frequency - or worse still a missed control cycle.

« The RS232 task will be scheduled by the RS232 interrupt service routine.

» The flexible timing requirements of the LED functionality means it can probably join the
embedded WEB server task within the idle task hook. If this is not adequate then it too can
be moved up to the high priority task.

Programowanie Mikrokontroleréw, styczern 2010 109

Rozwigzanie 2Db:
Reducing the Processor Overhead

e Concept of Operation

— The cooperative scheduler will only perform a context switch when one is
explicitly requested. This greatly reduces the processor overhead imposed
by the RTOS. The idle task, including the embedded WEB server
functionality, will execute without any unnecessary interruptions from the
kernel. An interrupt originating from either the RS232 or timer peripheral will
result in a context switch exactly and only when one is necessary. This way
the RS232 task will still pre-empt the idle task, and can still itself be pre-
empted by the plant control task - maintaining the prioritised system
functionality.

Scheduler Configuration

— The scheduler is configured for cooperative operation. The kernel tick is
used to maintain the real time tick value only.

e Conclusion

— Features of the RTOS kernel
can be used with very little overhead,
enabling a simplified design even on
systems where processor and
memory constraints prevent a fully
preemptive solution.

Priority] Tasks
2

PlantControlTask [inc. ScanKeypad()]

RS232Task

IdleTask [inc. WebServerTask, UpdateLED()]

Rozwigzanie 2Db:
Reducing the Processor Overhead

.- Creates only twio application tasks so therefore uses much less RAN than solution #2.

.- The RTOS processing overhead is reduced to a minimum.

Only a subset of the RTOS features are used. This necessitates a greater consideration of the timing
2 ® and execution environment at the application source code level, but still allows for a greatly simplified
design (when compared to solution #1).

. Fellance on processor peripherals. Mon portable,

The problems of analysis and interdependencies between modules as were identified with solution
#1 are starting to become a consideration again - although to a much lesser extent.

. The design might not scale if the application grows too large

Programowanie Mikrokontrolerow, styczen 2010 111

Przyktadowe systemy RTOS

FreeRTOS

— http://www.freertos.org/

uC/OS-lli

— http://www.micrium.com/

pC/OS
— http://www.embedded-os.de/

Ethernut
— http://www.ethernut.de/

Contiki - The Operating System for Embedded Smart Objects
- the Internet of Things
— http://www.sics.se/contiki/

AvrX Real Time Kernel
— http://www.barello.net/avrx/index.htm

uClinux - Embedded Linux/Microcontroller Project
— http://uclinux.org/

http://www.freertos.org/
http://www.micrium.com/
http://www.embedded-os.de/
http://www.ethernut.de/
http://www.sics.se/contiki/
http://www.barello.net/avrx/index.htm
http://uclinux.org/

Pytania?

Programowanie Mikrokontrolerow, styczen 2010 113

Politechnika todzka

Instytut Elektroniki

Dziekuje za uwage.

