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ŹródłaŹródła
• Do przygotowania prezentacji wykorzystano 

materiały z poniższych:
– FreeRTOS.orgTM Project – Designed for Microcontrollers

• http://www.freertos.org/

– uC/OS – The Real Time Kernel, Jean. J. Labrosse

– Real-Time Concepts for Embedded Systems, Qing
Li and Carolyn Yao

– http://www.sics.se/~adam/pt/ - Protothreads

– www.embedded.com

http://www.freertos.org/
http://www.sics.se/~adam/pt/
http://www.embedded.com
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Embedded SystemEmbedded System
• computing systems with tightly coupled hardware and 

software integration, that are designed to perform a dedicated
function, for eg.
– router
– printer
– set top box
– mp3 player
– navigation system
– etc.

• „embedded” – systems are usually an integral part of a larger
system, known as the embedding system. Multiple embedded
systems can coexist in an embedding system 



Programowanie Mikrokontrolerów, styczeń 2010 4
© Marcin Byczuk

Event Driven Embedded SystemsEvent Driven Embedded Systems

• event-driven embedded system:
– wait for some event (a time tick, a button press, a mouse

click, or the arrival of a data packet)
– recognize the event
– react by performing the appropriate computation. This

reaction might include:
• manipulating the hardware,
• generating secondary, "soft" events that trigger other internal

software components. 
– if event-handling action is complete enter a dormant state 

in anticipation of the next event.

• event-driven embedded system + time constraints = 
real-time embedded system
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Real-Time Embedded SystemReal-Time Embedded System
• system that responds to external events in a timely fashion

• responding to external events includes:
– recognizing when an event occurs, 
– performing the required processing as a result of the event,
– outputting the necessary results within a given time constraint.
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Real-Time Embedded SystemReal-Time Embedded System

• not all embedded systems exhibit real-time
behaviors nor are all real-time systems 
embedded
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Strategie programowaniaStrategie programowania

• Super Loop, 
– nazywane również Infinite/Endless Loop, 

Foreground/Background Systems etc.
• State Machines (maszyny stanu)
• Protothreads (protowątki) lub rozwiązania typu 

Super Simple Tasker (SST)
• RTOS

– kooperatywny
– wywłaszczeniowy
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Super LoopSuper Loop

• Super Loop jest konieczna ponieważ… nie 
mamy systemu operacyjnego do którego 
można wrócić…
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Super LoopSuper Loop
• Zalety:

– Prostota – budowa, testowanie oraz późniejsza 
rozbudowa,

– Wysoka wydajność oraz brak wymagań dotyczących 
sprzętu na którym uruchomiona ma być aplikacja,

– Przenoszenie na inne platformy.
• Wady:

– Bardzo proste aplikacje,
– Aplikacje wymagające spełnienia określonych, krytycznych 

ram czasowych – np. proces próbkowania z 
częstotliwością 500Hz,

– Nieustanna praca z „pełną mocą” (tryb normalny) –
problem, gdy aplikacja wymaga oszczędnego zarządzania 
energią.
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Super LoopSuper Loop

• Przykład:

Michael J. Pont. 
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Super Loop: wymagania współczesnych aplikacjiSuper Loop: wymagania współczesnych aplikacji

• Wymagania stawiane współczesnym urządzeniom 
(systemom zintegrowanym):
– Prędkość pojazdu ma być mierzona co 0,5s,
– Wyświetlacz powinien być odświeżany 40 razy na 

sekundę,
– Obliczone położenie przepustnicy musi zostać ustawione 

co 0,5s,
– Wibracje silnika muszą być mierzone (próbkowane) z 

częstotliwością 1000Hz,
– Reakcja na przerwanie czujnika krańcowego nie może 

przekroczyć 200ms,
– Klawiatura musi być skanowana co 50ms.
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Michael J. Pont. 

Super Loop: sposoby rozwiązania problemu…Super Loop: sposoby rozwiązania problemu…

• Dobry sposób… pod warunkiem, że:
– Znamy dokładny czas wykonywania funkcji X(),
– Czas ten jest zawsze jednakowy… w praktyce nie 

realne!!!
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Super Loop: sposoby rozwiązania problemu…Super Loop: sposoby rozwiązania problemu…

• The execution time of 
typical code is not 
constant, it changes with
successive passes
through a portion of the
loop,

• If a code change is
made, the timing of the
loop is affected,

• Most high volume
microcontroller-based
applications are
designed as 
foreground/background
systems.

!

!!!!
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Super Loop: sposoby rozwiązania problemu…Super Loop: sposoby rozwiązania problemu…

• Super Loop calls
modules (functions) to 
perform desired
operation

• ISRs handle 
asynchronous events
and perform critical
operations

• Worst case task level
response time depends
on how long the
background loop takes to 
execute

task level interrupt level
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Co gdy program staje się bardziej skomplikowany?Co gdy program staje się bardziej skomplikowany?

• w pewnym momencie podeście typu „klasyczny 
Super Loop” przestaje wystarczać,
– zadania krytyczne czasowo, realizowane na poziomie 

przerwań stają się bardziej rozbudowane (np. pojawia się
zależność od kontekstu, stanu, w jakim jest urządzenie),

– konieczność implementacji protokołów transmisji
– komunikacja – np. modem GSM

• najbardziej naturalnym podejściem staje się
implementacja programu (jednego bądź większej 
ilości modułów) za pomocą maszyn stanu…
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State MachinesState Machines
• A state machine is defined as an 

algorithm that can be in one of a small
number of states. 

• A state is a condition that causes a 
prescribed relationship of inputs to 
outputs, and of inputs to next states.

• Mealy machine is a state machine where
the outputs are a function of both present
state and input. Moore machine, in which
the outputs are a function only of state.

• In both cases, the next state is a function
of both present state and input. 
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State MachinesState Machines

• the first occurrence of a slash produces no output, but causes
the machine to advance to the second state.

• if it encounters a non-slash while in the second state, then it
will go back to the first state, because the two slashes must
be adjacent.

• if it finds a second slash, however, then it produces the "we're
done" output.

A simple state machine to parse a character string, looking for ‘//’
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1. Turn radio on.
2. Wait for t_awake milliseconds.
3. Turn radio off, but only if all communication has completed.
4. If communication has not completed, wait until it has 

completed. Then turn off the radio.
5. Wait for t_sleep milliseconds. If the radio could not be turned 

off before t_sleep milliseconds because of remaining 
communication, do not turn the radio off at all.

6. Repeat from step 1.

Problem: with events, we can't write this as a 6-step program!

example of implementation - requirementsexample of implementation - requirements
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With events, we must use an explicit state machine!
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example of implementation – state machineexample of implementation – state machine
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simple, but:
• it can lead to a very long function 

(for eg. 10 or 20 lines of code per 
state for each of 20 or 30 states) 

• it can lead to astray when you 
change the code late in the 
testing phase (for eg. forgot a 
break statement at the end of a 
case)

• having one state's code "fall into" 
the next state's code is usually a 
no-no (can be used only when 
implicitly marked with for eg. 

//fallthrough
comment)

enum {
ON,
WAITING,
OFF

} state;

void radio_wake_eventhandler() {
switch(state) {
case OFF:
if(timer_expired(&timer)) {

radio_on();
state = ON;
timer_set(&timer, T_AWAKE);

}
break;

case ON:
if(timer_expired(&timer)) {

timer_set(&timer, T_SLEEP);
if(!communication_complete()) {

state = WAITING;
} else {

radio_off();
state = OFF;

}
}
break;

case WAITING:
if(communication_complete() || timer_expired(&timer)) {

state = ON;
timer_set(&timer, T_AWAKE);

} else {
radio_off();
state = OFF;

}
break;

}
}

example of implementation – C code (1)example of implementation – C code (1)
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typedef enum {
ON = 0,
WAITING,
OFF

} eState_t;

void (*state_table[])() = {RadioOn, RadioWait, 
RadioOff};

eState_t currentState;

main() {
//...
while (1) {

decrementTimer();
}

}

void radio_wake_eventhandler(void) {
state_table[currentState]();

}

void RadioOff(void) {
if(timer_expired(&timer)) {
radio_on();
currentState = ON;
timer_set(&timer, T_AWAKE);

}
}

void RadioOn(void) {
if(timer_expired(&timer)) {
timer_set(&timer, T_SLEEP);
if(!communication_complete()) {
currentState = WAITING;

} else {
radio_off();
currentState = OFF;

}
}

}

void RadioWait(void) {
if(communication_complete() || 

timer_expired(&timer)) {
currentState= ON;
timer_set(&timer, T_AWAKE);

} else {
radio_off();
currentState = OFF;

}
}

example of implementation – C code (2)example of implementation – C code (2)
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State Machines – sum upState Machines – sum up

• Advantages:
– state machine can define various things: whole application, 

application module, protocol analyzer module, key 
debouncer etc.

– state changes can be triggered by event-handler functions
– forces the programmer to think of all the cases and, 

therefore, to extract all the required information from the 
user,

– you can quickly draw a state transition diagram on a 
whiteboard, in front of the user, and walk him through it,

– the test plan almost writes itself - all you have to do is to go 
through every state transition
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Protothreads / Super Simple TaskerProtothreads / Super Simple Tasker

• Advantages :
– implements sequential flow of control without using

complex state machines or full multi-threading
– lightweight:

• in traditional multi-threading may have a too large memory
overhead for embedded system – for eg. each task requires its own
stack,

• in protothreads all threads run on the same stack, context switching
is done by stack rewinding

– requires only two bytes of memory per protothread,
– implemented in pure C, do not require any machine-

specific assembler code.
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RTOSRTOS
• A real-time operating system (RTOS) is

a program that schedules execution in
a timely manner, manages system 
resources, and provides a consistent
foundation for developing application
code. 

• Application code designed on an RTOS 
can be quite diverse, ranging from a 
simple application for a digital
stopwatch to a much more complex
application for aircraft navigation. 

• Therefore a good RTOS is scalable in
order to meet different sets of 
requirements for different applications. 

In some applications, an 
RTOS comprises only a 
kernel, which is the core 
supervisory software that 
provides minimal logic, 

scheduling, and resource-
management algorithms.

But RTOS can be a 
combination of various
modules, including the
kernel, a file system, 
networking protocol
stacks, and other

components required for a 
particular application
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KernelKernel
• Kernel – the part of a multitasking system responsible for the

management of tasks (that is, for managing the CPU's time) 
and communication between tasks. 
The fundamental service provided by the kernel is context
switching.

• The use of a real-time kernel will generally simplify the design 
of systems by allowing the application to be divided into
multiple tasks managed by the kernel. A kernel will add
overhead to your system and consume CPU time (typically
between 2 and 5%).

• A kernel can allow you to make better use of your CPU by 
providing you with indispensible services such as semaphore
management, mailboxes, queues, time delays, etc.
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Kernel componentsKernel components

• Scheduler – is contained within 
each kernel and follows a set of 
algorithms that determines which 
task executes when. Some 
common examples of scheduling 
algorithms include round-robin 
and preemptive scheduling.

• Objects – are special kernel 
constructs that help developers 
create applications for real-time 
embedded systems. Common 
kernel objects include tasks, 
semaphores, and message 
queues.

• Services – are operations that 
the kernel performs on an object 
or, generally operations such as 
timing, interrupt handling, and 
resource management.

Common components in an RTOS kernel that including objects, 
the scheduler, and some services 
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TerminologiaTerminologia
• Task Level Response – time, between moments when

information for a background module was made available by 
an ISR and when it was processed by the background
routine.

• Critical Section Of Code, Critical Region - A critical section
of code is code that needs to be treated indivisibly. Once the
section of code starts executing, it must not be interrupted.

• Resource - A resource is any entity used by a task. A 
resource can thus be an I/O device such as a printer, a 
keyboard, a display, etc. or a variable, a structure, an array, 
etc

• Shared Resource - A shared resource is a resource that can
be used by more than one task. Each task should gain
exclusive access to the shared resource to prevent data 
corruption – this is called Mutual Exclusion.
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RTOS OverheadRTOS Overhead
• RTOS Overhead – code added by RTOS kernel. Kernel requires extra 

ROM (code space), additional RAM for its data structures but most 
importantly, each task requires its own stack space which has a tendency
to eat up RAM quite quickly. 

• RTOS overhead depends on
– number of tasks,
– how many registers the CPU has,
– services provided by the kernel (communication between tasks etc.)

• The time required to perform a context switch (fundamental service 
provided by the kernel) is determined by how many registers have to be 
saved and restored by the CPU. 

• Performance of a real-time kernel should not be judged on how many 
context switches the kernel is capable of doing per second.



Programowanie Mikrokontrolerów, styczeń 2010 29
© Marcin Byczuk

SchedulerScheduler
• Scheduler – is the part of the kernel responsible for 

determining which task will run next.
• To understand how scheduling works one needs to know

following terms:
– schedulable entities
– multitasking
– context switching
– dispatcher
– scheduling algorithms

• Schedulable entities - schedulable entity is a kernel object
that can compete for execution time on a system, based on a 
predefined scheduling algorithm; tasks and processes are all
examples of schedulable entities found in most kernels,
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MultitaskingMultitasking
• Multitasking – Multitasking is the process

of scheduling and switching the CPU 
between several tasks; a single CPU 
switches its attention between several
sequential tasks; 

• Multitasking is the ability of the operating
system to handle multiple activities within
set deadlines. A real-time kernel might
have multiple tasks that it has to schedule
to run. 

• Multitasking maximizes the utilization of the
CPU and also provides for modular
construction of applications. 

• One of the most important aspects of 
multitasking is that it allows the application
programmer to manage complexity inherent
in real-time applications. Application
programs are typically easier to design and 
maintain if multitasking is used.
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Task, ThreadTask, Thread
• Task, Thread - a simple

program that thinks it has
the CPU all to itself. The
design process for a real-
time application involves
splitting the work to be 
done into tasks which are
responsible for a portion of 
the problem. Each task is
assigned a priority, its own
set of CPU registers, and 
its own stack area

MEMORY

CPU
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Task StatesTask States
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Context Switch / Task SwitchContext Switch / Task Switch

• Context Switch / Task Switch – When a 
multitasking kernel (it’s scheduler) decides to 
run a different task, it simply saves the current
task's context (CPU registers) in the current
task's context storage area – it’s stack. Once
this operation is performed, the new task's
context is restored from its storage area and 
then resumes execution of the new task's
code. 
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DispatcherDispatcher
• The dispatcher is the part of the scheduler that

performs context switching and changes the flow of 
execution. At any time an RTOS is running, the flow
of execution, also known as flow of control, is
passing through one of three areas: through an 
application task, through an ISR, or through the
kernel.

• When a task or ISR makes a system call, the flow of 
control passes to the kernel to execute one of the
system routines provided by the kernel. When it is
time to leave the kernel, the dispatcher is
responsible for passing control to one of the tasks in
the user’s application. It will not necessarily be the
same task that made the system call.
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Context Switch on an AVRContext Switch on an AVR

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

Context Switch
Current Execution Context

will be switched - vControlTask
context is to be loaded

what can cause context switch:
- RTOS kernel (it will suspend and resume tasks as necessary to 
ensure the task with highest priority that is ready to run is the task
given processing time,

- task can choose to suspend itself:
- sleep for a fixed period of time (wait a timeout),
- wait for a resource to become available

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch on an AVRContext Switch on an AVR
void SIG_OUTPUT_COMPARE1A( void ) __attribute__ ( ( signal, naked ) ); 
void vPortYieldFromTick( void ) __attribute__ ( ( naked ) );

void SIG_OUTPUT_COMPARE1A( void ) { // Interrupt service routine for the RTOS tick.
// Call the tick function.
vPortYieldFromTick();
// Return from the interrupt. If a context switch has occurred this
// will return to a different task.
asm volatile ( "reti" ); 

}
void vPortYieldFromTick(void ) {

// This is a naked function so the context is saved.
portSAVE_CONTEXT();
// Increment the tick count and check to see if the new tick value has caused a
// delay period to expire. This function call can cause a task to become ready to run.
vTaskIncrementTick(); 
// See if a context switch is required. Switch to the context of a task made ready
// to run by vTaskIncrementTick() if it has a priority higher than the interrupted task.
vTaskSwitchContext(); 
// Restore the context. If a context switch has occurred this will restore 
// the context of the task being resumed.
portRESTORE_CONTEXT(); 
// Return from this naked function.
asm volatile ( "ret" ); 

}
http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch on an AVRContext Switch on an AVR

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

The AVR Context

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 1: Prior to the RTOS tick 
interrupt

Context Switch Step 1: Prior to the RTOS tick 
interrupt

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 2: The RTOS tick interrupt
occurs

Context Switch Step 2: The RTOS tick interrupt
occurs

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 3: The RTOS tick interrupt
executes

Context Switch Step 3: The RTOS tick interrupt
executes

Entire AVR execution context is pushed onto the stack of TaskA

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 4: Incrementing the Tick
Count

Context Switch Step 4: Incrementing the Tick
Count

We assume that incrementing the tick count has caused TaskB to become ready to run. 
TaskB has a higher priority than TaskA so vTaskSwitchContext() selects TaskB as the 
task to be given processing time when the ISR completes 

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 5: The TaskB stack pointer is
retrieved

Context Switch Step 5: The TaskB stack pointer is
retrieved

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 6: Restore the TaskB contextContext Switch Step 6: Restore the TaskB context

The RTOS tick interrupt interrupted TaskA, but is 
returning to TaskB - the context switch is complete! 

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm
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Context Switch Step 7: The RTOS tick exitsContext Switch Step 7: The RTOS tick exits

http://masters.donntu.edu.ua/2006/fvti/taitsky/library/art5.htm


Programowanie Mikrokontrolerów, styczeń 2010 45
© Marcin Byczuk

Scheduling AlgorithmsScheduling Algorithms

• The scheduler determines which task runs by 
following a scheduling algorithm (also known
as scheduling policy). Most kernels today
support two common scheduling algorithms:
– preemptive priority-based scheduling
– non-preemptive priority-based scheduling

Example of preemptive priority-
based scheduling
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Scheduling AlgorithmsScheduling Algorithms

• Most real-time kernels are priority based. Each
task is assigned a priority based on its
importance. The priority for each task is
application specific. In a priority-based kernel, 
control of the CPU will always be given to the
highest priority task ready-to-run. When the
highest-priority task gets the CPU, however, is
determined by the type of kernel used.

• There are two types of priority-based kernels: 
non-preemptive and preemptive
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Types of priority-based kernelsTypes of priority-based kernels

• Each task does something to explicitly give
up control of the CPU. To maintain the
illusion of concurrency, this process must be 
done frequently.

• Asynchronous events are handled by ISRs.
• ISR can make a higher priority task ready to 

run, but the ISR always returns to the
interrupted task.

• The new higher priority task will gain control
of the CPU only when the current task gives
up the CPU.

• Highest priority task ready to run is always 
given control of the CPU

• When a task makes a higher priority task 
ready to run, the current task is preempted 
(suspended) and the higher priority task is 
immediately given control of the CPU

• If an ISR makes a higher priority task ready, 
when the ISR completes, the interrupted 
task is suspended and the new higher 
priority task is resumed

• Execution of the highest priority task is 
deterministic.

RTOS

Non-preemptive /
Cooperative Kernel Preemptive Kernel
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Types of priority-based kernelsTypes of priority-based kernels

RTOS

Non-preemptive /
Cooperative Kernel Preemptive Kernel
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Non-preemptive / Cooperative KernelNon-preemptive / Cooperative Kernel
• Zalety

– Interrupt latency is typically low
– Non-reentrant functions can be used by each task without fear of corruption by 

another task, however, they should not be allowed to give up control of the CPU
– Task-level response using a non-preemptive kernel can be much lower than with

foreground/background systems
– Lesser need to guard shared data through the use of semaphores – each task

owns the CPU and you don't have to fear that a task will be preempted (but in
some instances, semaphores should still be used – shared I/O devices may still
require the use of mutual exclusion semaphores)

• Wady
– Responsiveness - A higher priority task that has been made ready to run may

have to wait a long time to run, because the current task must give up the CPU 
when it is ready to do so

– Task-level response time is non-deterministic
– You never really know when the highest priority task will get control of the CPU
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Preemptive KernelPreemptive Kernel
• Zalety

– Great responsiveness - the highest priority task ready to run is always given
control of the CPU.

– Execution of the highest priority task is deterministic.
– Task-level response time is minimized.

• Wady
– Larger RTOS overhead
– Application code using a preemptive kernel should not make use of non-reentrant

functions unless exclusive access to these functions is ensured through the use
of mu tual exclusion semaphores, because both a low priority task and a high 
priority task can make use of a common function. Corruption of data may occur if
the higher priority task preempts a lower priority task that is making use of the
function.
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Reentrant FunctionReentrant Function
• Function that can be used by more than one task without fear

of data corruption (function can be interrupted at any time and 
resumed at a later time without loss of data). Reentrant
functions either use local variables (i.e., CPU registers or
variables on the stack) or protect data when global variables
are used.

Reentrant Function Not-reentrant Function
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Problem of reentrancyProblem of reentrancy
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PrioritiesPriorities

• Task Priority - The more important the task, 
the higher the priority given to it.

• Static Priorities - priority of each task does
not change during the application's execution. 
Each task is thus given a fixed priority at
compile time.

• Dynamic Priorities - priority of tasks can be 
changed during the application's execution; 
each task can change its priority at run-time –
priority inversion problem
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Priority inversion problemPriority inversion problem
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Priority inheritancePriority inheritance
Kernel that supports
priority inheritance

Dziedziczenie
priorytetu
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Mutual ExclusionMutual Exclusion
The easiest way for tasks to communicate with each other is through shared
data structures (easy when all tasks exist in a single address space):

– Global variables,
– Pointers,
– Buffers,
– Linked lists,
– Ring buffers, etc.

• While sharing data simplifies the exchange of information, you must
ensure that each task has exclusive access to the data to avoid data 
corruption – this is called mutual exclusion.

• Most common methods to obtain exclusive access to shared resources 
are:
– Disabling Interrupts,
– Test-And-Set,
– Disabling Scheduling,
– Using Semaphores.
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Mutual ExclusionMutual Exclusion
• Disabling Interrupts

• Test-And-Set

• Disabling Scheduling
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Mutual ExclusionMutual Exclusion
• Semaphores



Programowanie Mikrokontrolerów, styczeń 2010 59
© Marcin Byczuk

SemaphoresSemaphores
• Semaphore - protocol mechanism offered by most 

multitasking kernels. Semaphores are used to:
– control access to a shared resource (mutual exclusion);
– signal the occurrence of an event;
– allow two tasks to synchronize their activities.

• A semaphore is a key that your code acquires in order to 
continue execution. If the semaphore is already in use, the
requesting task is suspended until the semaphore is released
by its current owner.

• Two types of semaphores – binary and counting (8-, 16- or
32-bit).

• Three operations that can be performed on semaphore:
– INIT (CREATE)
– WAIT (PEND)
– SIGNAL (POST)
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SemaphoresSemaphores
• The initial value of the semaphore must be provided when the semaphore

is initialized. The waiting list of tasks is always initially empty.
• A task desiring the semaphore will perform a WAIT operation. If the

semaphore is available (the semaphore value is greater than 0), the
semaphore value is decremented and the task continues execution. If the
semaphore's value is 0, the task performing a WAIT on the semaphore is
placed in a waiting list. Most kernels allow you to specify a timeout; if the
semaphore is not available within a certain amount of time, the requesting
task is made ready to run and an error code (indicating that a timeout has
occurred) is returned to the caller.

• A task releases a semaphore by performing a SIGNAL operation. If no 
task is waiting for the semaphore, the semaphore value is simply
incremented. If any task is waiting for the semaphore, however, one of the
tasks is made ready to run and the semaphore value is not incremented; 
the key is given to one of the tasks waiting for it. Depending on the kernel, 
the task which will receive the semaphore is either:
– the highest priority task waiting for the semaphore, or
– the first task that requested the semaphore (First In First Out, or FIFO).
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Binary semaphoresBinary semaphores

I Ia amm t tasask k#1 #!2!

I am task #1!
I am task #2!
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Binary semaphoresBinary semaphores

• Ukrywanie semaforów przed zadaniami
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Counting SemaphoresCounting Semaphores
• Buffer management using a counting semaphore

– Buffer pool initially contains 10 buffers,
– A task would obtain a buffer from the buffer manager by calling BufReq().
– When the buffer is no longer needed, the task would return the buffer to the buffer

manager by calling BufRel().
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SemaphoresSemaphores

• Semaphores are often overused. The use of a semaphore to access a 
simple shared variable is overkill in most situations. 

• The overhead involved in acquiring and releasing the semaphore can
consume valuable time. You can do the job just as efficiently by disabling
and enabling interrupts.

• Let's suppose that two tasks are sharing a 32-bit integer variable. The first 
task increments the variable while the other task clears it. If you consider
how long a processor takes to perform either operation, you will realize
that you do not need a semaphore to gain exclusive access to the
variable. Each task simply needs to disable interrupts before performing its
operation on the variable and enable interrupts when the operation is
complete. 

• A semaphore should be used, however, if the variable is a floating-point
variable and the microprocessor doesn't support floating-point in
hardware. In this case, the processing time involved in processing the
floating-point variable could affect interrupt latency if you had disabled
interrupts.
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Deadlock EmbraceDeadlock Embrace
• Deadlock (Deadky Embrace) a situation in which two tasks

are each unknowingly waiting for resources held by each
other. If task T1 has exclusive access to resource R1 and task
T2 has exclusive access to resource R2, then if T1 needs
exclusive access to R2 and T2 needs exclusive access to R1, 
neither task can continue. They are deadlocked. 

• The simplest way to avoid a deadlock is for tasks to:
– acquire all resources before proceeding,
– acquire the resources in the same order, and
– release the resources in the reverse order

T1

R1

T2

R2

R1 R2

R1 R2DEADLOCK
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Unilateral / Bilateral RendezvousUnilateral / Bilateral Rendezvous
• Synchronizing tasks and ISRs - A task can be synchronized with an ISR, or

another task when no data is being exchanged, by using a semaphore. 
• Note that, in this case, the semaphore is drawn as a flag, to indicate that it is used

to signal the occurrence of an event (rather than to ensure mutual exclusion, in
which case it would be drawn as a key). 

• When used as a synchronization mechanism, the semaphore is initialized to 0. 
Using a semaphore for this type of synchronization is using what is called a 
unilateral rendezvous. A task initiates an I/O operation and then waits for the
semaphore. When the I/O operation is complete, an ISR (or another task) signals
the semaphore and the task is resumed.

• Two tasks can synchronize their activities by using two semaphores. This is called
a bilateral rendezvous. 
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Conjunctive / Disjunctive SynchronizationConjunctive / Disjunctive Synchronization

• Event flags are used
when a task needs to 
synchronize with the
occurrence of multiple
events. The task can be 
synchronized when
– any of the events have

occurred – disjunctive
synchronization (logical
OR),

– all events have occurred –
conjunctive
synchronization (logical
AND).
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Intertask CommunicationIntertask Communication
• It is sometimes necessary for a task or an ISR to communicate information

to another task. This information transfer is called intertask
communication. Information may be communicated between tasks in two
ways:
– through global data;
– by sending messages.

• When using global variables, each task or ISR must ensure that it has
exclusive access to the variables. 
– If an ISR is involved, the only way to ensure exclusive access to the common

variables is to disable interrupts. 
– If two tasks are sharing data each can gain exclusive access to the variables

by using either disabling/enabling interrupts or through a semaphore (as we 
have seen). Note that a task can only communicate information to an ISR by 
using global variables. 

• A task is not aware when a global variable is changed by an ISR unless
the ISR signals the task by using a semaphore or by having the task
regularly poll the contents of the variable. To correct this situation, you
should consider using either a message mailbox or a message queue
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Message MailboxMessage Mailbox
• Message Mailbox is typically a pointer size variable. Through a service 

provided by the kernel, a task or an ISR can deposit a message (the
pointer) into this mailbox. Similarly, one or more tasks can receive
messages through a service provided by the kernel. Both the sending task
and receiving task will agree as to what the pointer is actually pointing to.

• A waiting list is associated with each mailbox in case more than one task
desires to receive messages through the mailbox. A task desiring to 
receive a message from an empty mailbox will be suspended and placed
on the waiting list until a message is received. 

• Typically, the kernel will allow the task waiting for a message to specify a 
timeout. If a message is not received before the timeout expires, the
requesting task is made ready-to-run and an error code (indicating that a 
timeout has occurred) is returned to it. 

• When a message is deposited into the mailbox, either the highest priority
task waiting for the message is given the message (called priority-based) 
or the first task to request a message is given the message (called First-In-
First-Out, or FIFO).
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Message QueueMessage Queue
• Through a service provided by the kernel, a task or an ISR can deposit a 

message (the pointer) into a message queue. Similarly, one or more
tasks can receive messages through a service provided by the kernel. 
Both the sending task and receiving task will agree as to what the pointer 
is actually pointing to. Generally, the first message inserted in the queue
will be the first message extracted from the queue (FIFO). 

• As with the mailbox, a waiting list is associated with each message queue
in case more than one task is to receive messages through the queue. A 
task desiring to receive a message from an empty queue will be 
suspended and placed on the waiting list until a message is received.

• Typically, the kernel will allow the task waiting for a message to specify a 
timeout. If a message is not received before the timeout expires, the
requesting task is made ready-to-run and an error code (indicating a 
timeout occurred) is returned to it. 

• When a message is deposited into the queue, either the highest priority
task or the first task to wait for the message will be given the message.
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Interrupt Service RoutinesInterrupt Service Routines
• An interrupt is a hardware mechanism used to inform the CPU that an 

asynchronous event has occurred. When an interrupt is recognized, the
CPU saves part (or all) of its context (i.e. registers) and jumps to a special
subroutine called an Interrupt Service Routine.

• The ISR processes the event and upon completion of the ISR, the
program returns to:
– The background for a foreground/background system.
– The interrupted task for a non-preemptive kernel.
– The highest priority task ready-to-run for a preemptive kernel.

• Interrupts allow a microprocessor to process events when they occur. This
prevents the microprocessor from continuously polling an event to see if
this event has occurred. Microprocessors allow interrupts to be ignored
and recognized through the use of two special instructions: disable
interrupts and enable interrupts, respectively. 

• In a real-time environment, interrupts should be disabled as little as 
possible. Disabling interrupts affects interrupt latency and also, disabling
interrupts may cause interrupts to be missed. 
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Interrupt Service RoutinesInterrupt Service Routines

• Processors
generally allow
interrupts to be 
nested. This means
that while servicing
an interrupt, the
processor will 
recognize and 
service other (more
important) interrupts.
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Interrupt Latency, Response, and Recovery Interrupt Latency, Response, and Recovery 
Foreground/Background System
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Interrupt Latency, Response, and RecoveryInterrupt Latency, Response, and Recovery
Non-preemptive Kernel
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Interrupt Latency, Response, and RecoveryInterrupt Latency, Response, and Recovery
Preemptive Kernel
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RTOS Clock TickRTOS Clock Tick
• Clock Tick – special interrupt that occurs

periodically. This interrupt can be viewed as the
system's heartbeat. The time between interrupts is
application specific and is generally between 10 and 
200 mS. The clock tick interrupt allows a kernel to 
delay tasks for an integral number of clock ticks and 
to provide timeouts when tasks are waiting for events
to occur. The faster the tick rate, the higher the
overhead imposed on the system.

• All kernels allow tasks to be delayed for a certain
number of clock ticks. The resolution of delayed
tasks is 1 clock tick, however, this does not mean
that its accuracy is 1 clock tick.
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RTOS Clock TickRTOS Clock Tick

The task attempts to delay for 20 mS but because of its priority, actually executes at
varying intervals. This will thus cause the execution of the task to jitter.
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RTOS Clock TickRTOS Clock Tick

The execution times of all higher-priority tasks and ISRs are slightly less than one tick. If the task
delays itself just before a clock tick, the task will execute again almost immediately! Because of 
this, if you need to delay a task for at least 1 clock tick, you must specify one extra tick. In other

words, if you need to delay a task for at least 5 ticks, you must specify 6 ticks!
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RTOS Clock TickRTOS Clock Tick

The execution times of all higher-priority tasks and ISRs extend beyond one clock tick. In this case, 
the task that tries to delay for 1 tick will actually execute 2 ticks later! In this case, the task missed its

deadline. This might be acceptable in some applications, but in most cases it isn't.
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ComparisionComparision
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Przykładowy systemPrzykładowy system
• The system consists of: 

– An embedded computer within a 
control terminal. 

– Two fieldbus networked sensors. 
– The plant being controlled (could

be anything, motor, heater, etc.). 
This is connected on the same 
fieldbus network. 

– A matrix keypad that is scanned
using general purpose IO. 

– Two LED indicators. 
– An LCD display. 
– An embedded WEB server to 

which a remote monitoring 
computer can attach. 

– An RS232 interface to a 
configuration utility that runs on a 
PDA. 
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Stawiane wymagania / zadaniaStawiane wymagania / zadania
• Plant Control

– Each control cycle shall perform the following sequence: 
• Transmit a frame on the fieldbus to request data from the networked sensors. 
• Wait to receive data from both sensors. 
• Execute the control algorithm. 
• Transmit a command to the plant. 

– The control function of the embedded computer shall transmit a request every
10ms exactly, and the resultant command shall be transmitted within 5ms of 
this request. The control algorithm is reliant on accurate timing, it is therefore
paramount that these timing requirements are met. 

• Local Operator Interface [keypad and LCD]
– The keypad and LCD can be used by the operator to select, view and modify

system data. The operator interface shall function while the plant is being
controlled. To ensure no key presses are missed the keypad shall be scanned
at least every 15ms. The LCD shall update within 50ms of a key being
pressed. 
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Stawiane wymagania / zadaniaStawiane wymagania / zadania

• LED
– The LED shall be used to indicate the system status. A flashing green LED 

shall indicate that the system is running as expected. A flashing red LED shall
indicate a fault condition. The correct LED shall flash on and off once ever
second. This flash rate shall be maintained to within 50ms. 

• RS232 PDA Interface
– The PDA RS232 interface shall be capable of viewing and accessing the same 

data as the local operator interface, and the same timing constraints apply -
discounting any data transmission times. 

• TCP/IP Interface
– The embedded WEB server shall service HTTP requests within one second



Programowanie Mikrokontrolerów, styczeń 2010 84
© Marcin Byczuk

Stawiane wymagania / zadania - podziałStawiane wymagania / zadania - podział
• The timing requirements of the hypothetical system 

can be split into three categories: 
– Strict timing - the plant control

• The control function has a very strict timing requirement as it must
execute every 10ms.

– Flexible timing - the LED
• While the LED outputs have both maximum and minimum time 

constraints, there is a large timing band within which they can
function.

– Deadline only timing - the human interfaces
• This includes the keypad, LCD, RS232 and TCP/IP Ethernet 

communications.
• The human interface functions have a different type of timing 

requirement as only a maximum limit is specified. For example, the
keypad must be scanned at least every 10ms, but any rate up to 
10ms is acceptable. 
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Rozwiązanie 1:
SUPER LOOP
Rozwiązanie 1:
SUPER LOOP

• Each component of the application is represented by 
a function that executes to completion. 

• Ideally a hardware timer would be used to schedule
the time critical plant control function. However, 
having to wait for the arrival of data and the complex
calculation performed make the control function
unsuitable for execution within an interrupt service 
routine. 

• Prioritisation can be introduced with frequency and 
order in which components are called within the loop.
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Rozwiązanie 1:
SUPER LOOP
Rozwiązanie 1:
SUPER LOOP
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SUPER LOOP - The Plant Control FunctionSUPER LOOP - The Plant Control Function

• The control function can be represented by the
following pseudo code: 

void PlantControlCycle( void ) { 
TransmitRequest(); 
WaitForFirstSensorResponse(); 

if ( Got data from first sensor ) { 
WaitForSecondSensorResponse(); 

if( Got data from second sensor ) { 
PerformControlAlgorithm(); 
TransmitResults(); 

} 
} 

}
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SUPER LOOP - The Human Interface FunctionsSUPER LOOP - The Human Interface Functions

• Keypad, LCD, RS232 communications and 
embedded WEB server. 

int main( void ) { 
Initialise(); 
for( ;; ) { 

ScanKeypad(); 
UpdateLCD(); 
ProcessRS232Characters(); 
ProcessHTTPRequests(); 

} 
// Should never get here. 
return 0; 

}

Two assumptions:
– Comunications IO is buffered by interrupt service routines

so peripherals do not require polling,
– Individual function calls within the loop execute quickly

enough for all the maximum timing requirements to be met. 
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SUPER LOOP - Scheduling the Plant Control 
Function

SUPER LOOP - Scheduling the Plant Control 
Function

• Control function cannot be simply called from a 10ms timer interrupt – it is too long. 
We need some temporal control. For example:  

int TimerExpired; 
// Configured to execute every 10ms. 
void TimerInterrupt( void ) { 

TimerExpired = true; 
} 

int main( void ) { 
Initialise();

for( ;; ) { 
if( TimerExpired ) { 

PlantControlCycle(); 
TimerExpired = false;
ScanKeypad(); 
UpdateLCD(); 

// The LEDs could use a count of 
// the number of interrupts, or a 
// different timer. 
ProcessLEDs();     

// Comms buffers must be large
// enough to hold 10ms worth of 
// data. 
ProcessRS232Characters(); 

ProcessHTTPRequests(); 
} 
// The processor can be put to sleep
// here provided it is woken by any
// interrupt. 

} 
// Should never get here. 
return 0; 

}

... but this is not an acceptable solution…
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SUPER LOOP - Scheduling the Plant Control 
Function

SUPER LOOP - Scheduling the Plant Control 
Function

• Relies on every function maximum / minimum execution time, 
not very maintainable:
– A delay or fault on the field bus results in an increased execution time 

of the plant control function – problem with interface functions.
– Executing all the functions each cycle could result in a breach of the

control cycle timing.
• Jitter in the execution time may cause cycles to be missed

(ex. the execution time of ProcessHTTPRequests() could
be negligible when no HTTP requests have been received, 
but quite lengthy when a page was being served).

• The communication buffers are only serviced once per cycle
necessitating their length to be larger than would otherwise be 
necessary.
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SUPER LOOP - korektySUPER LOOP - korekty
• Allowing each function to execute in its entirety takes too long 

=> split each function into a number of states. Only one state 
is executed each call.

// Define the states
// for the control cycle function. 
typdef enum eCONTROL_STATES { 

eStart, // Start new cycle. 
eWait1, // First sensor response. 
eWait2  // Second sensor response. 

} eControlStates; 

void PlantControlCycle( void ) { 
static eControlState eState = eStart; 

switch( eState ) { 
case eStart : 

TransmitRequest(); 
eState = eWait1; 

break; 

case eWait1; 
if( Got data from first sensor ) { 

eState = eWait2; 
} 
// How are time outs to be handled? 

break; 

case eWait2; 
if( Got data from first sensor ) { 

PerformControlAlgorithm(); 
TransmitResults(); 
eState = eStart; 

} 
// How are time outs to be handled? 

break; 
} 

}
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SUPER LOOP - korektySUPER LOOP - korekty

• This function is now structurally more
complex, and introduces further scheduling
problems. 

• The code itself will become harder to 
understand as extra states are added - for 
example to handle timeout and error
conditions. 
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SUPER LOOP - korektySUPER LOOP - korekty
• The granularity of the timer - a shorter timer interval will give

more flexibility. 
• Implementing the control function as a state machine (an in

so doing making each call shorter) may allow it to be called
from a timer interrupt. 

• timer interval will have to be short enough to ensure the
function gets called at a frequency that meets its timing 
requirements. 

• Alternatively 
– Infinite loop solution could be modified to call different functions on 

each loop - with the high priority control function called more 
frequently.
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SUPER LOOP - korektySUPER LOOP - korekty
int main( void ) { 

int Counter = -1; 
Initialise(); 

// Function is implemented as a state 
// machine, execution is much quicker. 
// Timer frequency has been raised. 
for( ;; ) { 

if( TimerExpired ) { 
Counter++; 
switch( Counter ) { 

case 0 : 
ControlCycle(); 
ScanKeypad(); 

break; 

case 1 : 
UpdateLCD(); 

break; 

case 2 : 
ControlCycle(); 
ProcessRS232Characters(); 

break; 

case 3 : 
ProcessHTTPRequests(); 
// Go back to start 
Counter = -1; 

break; 
} 
TimerExpired = false; 

} 
} 
// Should never get here. 
return 0; 

}
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SUPER LOOP - korektySUPER LOOP - korekty
• More intelligence can be introduced by means of event

counters, whereby the lower priority functionality is only called
if an event has occurred that requires servicing: 

for( ;; ) { 
if( TimerExpired ) { 

Counter++; 

//Process the control cycle
// every other loop. 
switch( Counter ) { 

case 0 : 
ControlCycle(); 

break; 

case 1 : 
Counter = -1; 
break; 

} 

// Process just one of the other functions. 
// Only process a function if there is
// something to do. EventStatus() checks
// for events since the last iteration.       

switch( EventStatus() ) { 
case EVENT_KEY : 

ScanKeypad(); 
UpdateLCD(); 

break; 

case EVENT_232 : 
ProcessRS232Characters(); 

break; 

case EVENT_TCP : 
ProcessHTTPRequests(); 

break; 
} 
TimerExpired = false; 

} 
}
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SUPER LOOP - korektySUPER LOOP - korekty

• Processing events in this manner will reduce
wasted CPU cycles but the design will still
exhibit jitter in the frequency at which the
control cycle executes.
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Traditional Preemptive Multitasking System

Rozwiązanie 2:
Traditional Preemptive Multitasking System

• A separate task is created for each part of the system (when it
is able to exist in isolation, or is having a particular timing 
requirement).

• Tasks will block until an event indicates that processing is
required. Events can either be external (ex. key being
pressed), or internal (ex. timer expiring).

• Priorities - allocated to tasks in accordance to their timing 
requirements. The stricter the timing requirement the higher
the priority
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Rozwiązanie 2:
Traditional Preemptive Multitasking System

• Concept of Operation
– The highest priority task that is able to execute (is not blocked) is the task

guaranteed by the RTOS to get processor time. The kernel will immediately
suspend an executing task when a higher priority task becomes available.

– Scheduling occurs automatically, with no explicit knowledge, structuring or
commands within the application source code. But iIt is the responsibility of the
application designers to ensure that tasks are allocated an appropriate priority. 

– When no task is able to execute the idle task will execute. The idle task has
the option of placing the processor into power save mode. 

• Scheduler Configuration
– The scheduler is configured for preemptive operation. The kernel tick

frequency should be set at the slowest value that provides the required time 
granularity. 

• Conclusion
– This can be a good solution provided the RAM and processing capacity is

available. The partitioning of the application into tasks and the priority assigned
to each task requires careful consideration. 
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Rozwiązanie 2:
Traditional Preemptive Multitasking System
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Traditional Preemptive Multitasking System: 
Plant Control Task

Traditional Preemptive Multitasking System: 
Plant Control Task

• Implements all the
control functionality: 
critical timing 
requirements therefore
the highest priority within
the system.

#define CYCLE_RATE_MS 10 
#define MAX_COMMS_DELAY 2 

void PlantControlTask( void *pvParameters ) { 
portTickType xLastWakeTime; 
DataType Data1, Data2; 
// A 
InitialiseTheQueue(); 
xLastWakeTime = xTaskGetTickCount(); 

// B
for( ;; ) { 

// C 
vTaskDelayUntil( &xLastWakeTime, CYCLE_RATE_MS ); 
// Request data from the sensors. 
TransmitRequest(); 
// D 
if( xQueueReceive( xFieldBusQueue, &Data1, MAX_COMMS_DELAY ) ) { 

// E 
if( xQueueReceive( xFieldBusQueue, &Data2, MAX_COMMS_DELAY ) ) { 

PerformControlAlgorithm(); 
TransmitResults(); 

} 
} 

} 
}
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Traditional Preemptive Multitasking System: 
Embadded Web Server Task

• The embedded WEB server task can be represented by the
following pseudo code. This only utilises processor time when
data is available but will take a variable and relatively long 
time to complete. It is therefore given a low priority to prevent
it adversely effecting the timing of the plant control, RS232 or
keypad scanning tasks. 

void WebServerTask( void *pvParameters ) { 
DataTypeA Data; 
for( ;; ) { 

// Block until data arrives. xEthernetQueue is filled by the
// Ethernet interrupt service routine. 
if( xQueueReceive( xEthernetQueue, &Data, MAX_DELAY ) ) { 

ProcessHTTPData( Data ); 
} 

} 
}
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RS232 Interface

Traditional Preemptive Multitasking System: 
RS232 Interface

• This is very similar in structure to the embedded WEB server
task. It is given a medium priority to ensure it does not 
adversely effect the timing of the plant control task. 

void RS232Task( void *pvParameters ) { 
DataTypeB Data; 
for( ;; ) { 

// Block until data arrives. xRS232Queue is filled by the
// RS232 interrupt service routine. 
if( xQueueReceive( xRS232Queue, &Data, MAX_DELAY ) ) { 

ProcessSerialCharacters( Data ); 
} 

} 
} 
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Traditional Preemptive Multitasking System: 
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Traditional Preemptive Multitasking System: 
Keypad Scanning Task

• It is given a medium 
priority as it's timing 
requirements are
similar to the RS232 
task. 

• The cycle time is set 
much faster than the
specified limit – it
may not get
processor time 
immediately upon 
request – and once
executing may get
pre-empted by the
plant control task. 

#define DELAY_PERIOD 4 
void KeyScanTask( void *pvParmeters ) { 

char Key; 
portTickType xLastWakeTime; 
xLastWakeTime = xTaskGetTickCount(); 
for( ;; ) { 

// Wait for the next cycle. 
vTaskDelayUntil( &xLastWakeTime, DELAY_PERIOD ); 

// Scan the keyboard. 
if( KeyPressed( &Key ) ) { 

UpdateDisplay( Key ); 
} 

} 
}
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Traditional Preemptive Multitasking System: 
Keypad Scanning Task

Traditional Preemptive Multitasking System: 
Keypad Scanning Task

• If the overall system timing were such that this could be made
the lowest priority task then the call to vTaskDelayUntil() 
could be removed altogether. The key scan function would
then execute continuously whenever all the higher priority
tasks were blocked - effectively taking the place of the idle
task.
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Traditional Preemptive Multitasking System: 
LED Task

• The simplest of all the tasks.

#define DELAY_PERIOD 1000 
void LEDTask( void *pvParmeters ) { 

portTickType xLastWakeTime; 
xLastWakeTime = xTaskGetTickCount(); 
for( ;; ) { 

// Wait for the next cycle. 
vTaskDelayUntil( &xLastWakeTime, DELAY_PERIOD ); 
// Flash the appropriate LED. 
if( SystemIsHealthy() ) 

FlashLED( GREEN ); 
else

FlashLED( RED ); 
} 

}
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Rozwiązanie 2a:
Reducing RAM Utilisation

• Our hypothetical application can be split into three categories: 
– Strict timing - the plant control

• A high priority task is created to service the critical control functionality. 
– Deadline only timing - the human interface

• RS232, keyscan and LED functionality are grupped into a single medium priority
task. 

• It is desirable for the embedded WEB server task to operate at a lower priority. 
Rather than creating a task specifically for the WEB server an idle task hook is
implemented to add the WEB server functionality to the idle task. The WEB server
must be written to ensure it never blocks! 

– Flexible timing - the LED
• The LED functionality is too simple to warrant it's own task if RAM is at a premium. 

For reasons of demonstration this example includes the LED functionality in the
single medium priority task. It could of coarse be implemented in a number of ways
(from a peripheral timer for example). 

• Tasks other than the idle task will block until an event indicates that
processing is required. Events can either be external (ex. a key being
pressed), or internal (ex. a timer expiring). 
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Rozwiązanie 2a:
Reducing RAM Utilisation

• Concept of Operation
– The grouping of functionality into the medium priority task has three important

advantages over the infinite loop implementation presented in solution #2: 
• The use of a queue allows the medium priority task to block until an event causes

data to be available - and then immediately jump to the relevant function to handle 
the event. This prevents wasted processor cycles - in contrast to the infinite loop
implementation whereby an event will only be processed once the loop cycles to the
appropriate handler. 

• The use of the real time kernel removes the requirement to explicitly consider the
scheduling of the time critical task within the application source code. 

• The removal of the embedded WEB server function from the loop has made the
execution time more predictable. 

• Scheduler Configuration
– The scheduler is configured for preemptive operation. The kernel tick

frequency should be set at the slowest value that provides the required time 
granularity. 

• Conclusion
– This can be a good solution for systems 

with limited RAM but it is still processor
intensive. Spare capacity within the
system should be checked to allow for 
future expansion. 
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Rozwiązanie 2b:
Reducing the Processor Overhead

• The critical plant control functionality is once again implemented by a high priority task but 
the use of the cooperative scheduler necessitates a change to its implementation. 

– Previously the timing was maintained using the vTaskDelayUntil() API function. When the preemptive
scheduler was used, assigning the control task the highest priority ensured it started executing at
exactly the specified time. 

– Now the cooperative scheduler is being used - therefore a task switch will only occur when explicitly
requested from the application source code so the guaranteed timing is lost. 

• Solution #4 uses an interrupt from a peripheral timer to ensure a context switch is requested
at the exact frequency required by the control task. The scheduler ensures that each
requested context switch results in a switch to the highest priority task that is able to run. 

• The keypad scanning function also requires regular processor time so it too is executed
within the task triggered by the timer interrupt. The timing of this task can be easily
evaluated; The worst case processing time of the control function is given by the error case -
when no data is forthcoming from the networked sensors causing the control function to time 
out. The execution time of the keypad scanning function is basically fixed. We can therefore
be certain that chaining their functionality in this manner will never result in jitter in the control
cycle frequency - or worse still a missed control cycle. 

• The RS232 task will be scheduled by the RS232 interrupt service routine. 
• The flexible timing requirements of the LED functionality means it can probably join the

embedded WEB server task within the idle task hook. If this is not adequate then it too can
be moved up to the high priority task. 
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Rozwiązanie 2b:
Reducing the Processor Overhead

• Concept of Operation
– The cooperative scheduler will only perform a context switch when one is

explicitly requested. This greatly reduces the processor overhead imposed
by the RTOS. The idle task, including the embedded WEB server
functionality, will execute without any unnecessary interruptions from the
kernel. An interrupt originating from either the RS232 or timer peripheral will 
result in a context switch exactly and only when one is necessary. This way
the RS232 task will still pre-empt the idle task, and can still itself be pre-
empted by the plant control task - maintaining the prioritised system 
functionality. 

Scheduler Configuration
– The scheduler is configured for cooperative operation. The kernel tick is

used to maintain the real time tick value only. 
• Conclusion

– Features of the RTOS kernel
can be used with very little overhead, 
enabling a simplified design even on 
systems where processor and 
memory constraints prevent a fully
preemptive solution. 
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Przykładowe systemy RTOSPrzykładowe systemy RTOS
• FreeRTOS

– http://www.freertos.org/
• uC/OS-II

– http://www.micrium.com/
• pC/OS

– http://www.embedded-os.de/
• Ethernut

– http://www.ethernut.de/
• Contiki - The Operating System for Embedded Smart Objects

- the Internet of Things
– http://www.sics.se/contiki/

• AvrX Real Time Kernel
– http://www.barello.net/avrx/index.htm

• uClinux - Embedded Linux/Microcontroller Project 
– http://uclinux.org/

http://www.freertos.org/
http://www.micrium.com/
http://www.embedded-os.de/
http://www.ethernut.de/
http://www.sics.se/contiki/
http://www.barello.net/avrx/index.htm
http://uclinux.org/
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Dziękuję za uwagę.Dziękuję za uwagę.


